
Ant documentation for SProUT

{ulrich.schaefer,daniel.beck}@dfki.de

2005-11-22

0. Introduction

Apache ant is a platform-independent build tool for Java-based applications. It is
entirely written in Java and uses XML syntax to describe the build process and its
dependencies. Ant has been developed by the Apache project and is available freely
from http://ant.apache.org

Ant has been chosen for SProUT system builts because it does not only provide
mechanisms for compiling and running Java code, but can also be used to manage,
compile and distribute the linguistic resources, support remote repositories, compile
JavaCC grammars, package jar and zip archives, create and compare configuration
files, build documentation etc.

The central ant build file for SProUT (src/build.xml in the CVS) is described in this
documentation, but – as ant build files can build on other ant build files (got that?) –
build.xml can also form the basis for your own project definitions.

Ant 1.5.4 is part of the SProUT CVS sources and hence need not to be installed
separately. The central SProUT build file src/build.xml has been developed under
Linux. A few targets currently only run on Linux (flop-based targets and targets using
sed like sprout2hog), the rest should be platform-independent.

You are encouraged to contribute further targets, extend the documentation etc.!

Please note that some targets and properties may be renamed for consistency in the
near future. We apologize for inconsistencies and non-orthogonality of the existing
build targets, which is in great parts caused by the very different modules and
compilers that this ant build file tries to unify and make uniform. Also, some rarely
used targets or resources may not work/have not been tested for a long time. In

Ant documentation for SProUT 1

addition, not all resources are available for every language, hence, some targets
may not work because of missing resources. Only English and German grammars
have been tested well.

Please report ant-related bugs or send suggestions or fixes to the authors.

1. Ant for SProUT – Getting Started

a) Checking out the sources of SProUT

Create a new directory for your local CVS directory, e.g.,
 >> mkdir sproutcvs

Set the location of the CVS repository
 >> export CVSROOT=/project/cl/sprout/cvsroot

To checkout files or directories from CVS, go to your local cvs repository:
 >> cd sproutcvs
 >> cvs checkout src

Later on, to get updates from CVS, use
 >> cvs update -d src (or on more specific subdirectories or files)

When you have checked out the SProUT sources, do
 >> cd src

b) Adjust the ant start script

First, edit the script file src/ant (src/ant.bat for Windows)

You may want to adjust the JAVA_HOME and ANT_HOME paths. JAVA_HOME
must point to you Java installation, e.g., JAVA_HOME=/lt/pkg/j2sdk.1.4.2_07,
otherwise ant will complain even if javac and java are in your search PATH. If
JAVA_HOME is already properly set in your system environment, leave it
commented in the ant start script.

You may also adjust your ANT_HOME to an existing ant installation (ant also
belongs to the SPRoUT sources, that's why leaving that as ANT_HOME=./apache-
ant-1.5.4 will suffice in most cases).

c) Start the SProUT IDE

To start ant with the SProUT standard target, run
 >> ./ant

Then the IDE for developing grammars should start (and be compiled if not yet done).

Ant documentation for SProUT 2

The default build file is build.xml in the current working directory which does not need
to be specified on command line. Other build files, e.g. your own project-specific
ones, may be chosen using the -f ‹buildfile› command line option.

2. Running targets from the ant buildfile build.xml

To start ant target, run
 >> ./ant ‹target(s)›

The following command lists available SProUT targets in the central build file
 >> ./ant -projecthelp

Some targets requires parameters. You can pass them to ant by using
-D‹param›=‹value›, e.g.
 >> ./ant -Dlang=de compile_ne

For a short overview of ant command line syntax see
 >> ./ant -help

For a complete overview of all targets in the the ant build file, run
 >> ./ant antdoc

and open the generated HTML documentation in
“run/doc/antdoc/buildxml/index.html” with your favorite HTML browser

3. Directory structure

The build.xml ant script creates a run/ directory structure in parallel to the CVS mirror
in src/ reflecting the CVS directory structure where appropriate. The grammar
resources in src/grammar will by default be compiled to run/data, but their
subdirectories bear the same names, e.g. the compiled counterparts of
src/grammar/tdl/en/en_types.tdl can be found in run/data/tdl/en/en_types.grm after
calling ./ant compile_tdl -Dlang=en.

Ant documentation for SProUT 3

In the following tables, ${basedir} denotes the directory where the user checked out
the CVS sources, i.e., the parent directory of src.

The default properties (as defined in CVS) are in the file src/build.properties.

User-specific and superseding properties can be defined in user.properties (one
directory level higher, i.e., not in CVS).

Directory properties for source files

Property Default value Description

src.dir ${basedir}/src Base for all sources (CVS root)

srcdata.dir ${src.dir}/grammar Base for grammar sources etc.

srcjava.dir ${src.dir}/java Base for java sources

srclib.dir ${src.dir}/lib Base for libraries needed for compilation

Directory properties for generated files

Property Default value Description

run.dir ${basedir}/run Base for all generated (compiled) files

rundata.dir ${run.dir}/data Base for compiled grammars & resources

doc.dir ${run.dir}/doc Base for generated documentation

classes.dir ${run.dir}/classes Directory for generated Java class files

apidoc.dir ${doc.dir}/api Base for generated Javadoc

Ant documentation for SProUT 4

Figure 1 SProUT build architecture

Property Default value Description

runlib.dir ${run.dir}/lib Directory for generated/copied runtime libraries
(non-Java)

runtmp.dir ${run.dir}/tmp Temporary directory for compilation and runtime

runjar.dir ${runlib.dir}/java Directory for generated/copied runtime libraries
(Java)

runbin.dir ${run.dir}/bin Directory for copied runtime binaries (non-Java),
e.g. flop

4. Overview of the most frequently used targets

This table shows the most frequently used targets defined in build.xml. There are
additional, mostly auxiliary targets. For details, see the generated antdoc HTML
documentation.

Target name Parameters
(-Dparam=value)

Description

Core targets

ide compile and run grammar IDE

compile compile grammar IDE

jar compile and package sprout.jar

runtimejar compile and package sprout-runtime.jar

runtimejar_with_doc compile and package sprout-runtime+doc

clean delete compiled/generated files in run/

regcompilergui GUI for regular compiler

installergui GUI for runtime package installation

sprout2hog out.dir build SProUT runtime component for HoG

fs2latexjar build fs2latex.jar package

fsapplet generate FS renderer applet jar

runtimetest cfg.file, input.file test SProUT runtime

runapplet xml.file displays SProUTput XML in browser

Grammar compilation

compile_ne lang,
subgrammar,
charset, project,
projectname

compile xtdl, tdl, tok, ext. gazetter for ne

Ant documentation for SProUT 5

Target name Parameters
(-Dparam=value)

Description

compile_grammar lang, project,
projectname,
projectfile,
subgrammar

compile xtdl (.sgr) grammar to .fsm

compile_tdl lang, project,
tdlname, subdir

compile tdl type hierarchy to .grm

compile_tokenclasse
s

lang, ... (see doc) compile a single tokenizer class to .fsm

compile_extended_g
azetteer

lang, charset,
project, insensitive

compile the extended gazetteer files for a
language a to .sgz file. If insensitive is set
to yes, the gazetteer will be compiled
case insensitive – otherwise it will be
compiled case sensitive

generate_extended_
gazetteer

lang, charset,
insensitive

generate temporary file to compile the
extended gazetteer. If insensitive is set to
yes, the gazetteer will be compiled case
insensitive – otherwise it will be compiled
case sensitive

clean_data delete compiled tdl, xtdl, tokenizer files

clean_all_data delete compiled tdl, xtdl, tokenizer,
lexicon, (extended)gazetteer files

Copying/downloading resources

get_file repository,
dest.file,
repository.file

generic target to copy/download file from
SProUT binary file repository

get_lexicon lang, repository copy/download compressed lexicon file

get_all_lexicons repository copy/download all compressed lexicon
files

get_flop repository copy/download flop executable

Generating documentation

javadoc apidoc.dir generate Javadoc of all classes in the
CVS

javadoc_runtime apidoc.dir generate Javadoc of the runtime system
only

antdoc antfile, destdir generate antdoc of the build.xml file

get_apachedoc dest.dir fetch ant documentation for ant 1.5.4

ant2dot format, out.file generate visual dependency graph of ant
targets in build.xml

Experts only

Ant documentation for SProUT 6

Target name Parameters
(-Dparam=value)

Description

xtdl_javacc javacc.dir Generate XTDL parser with JavaCC

autotest_all out.dir automatic system build and test (under
cons.) for english and german

autotest lang, config.file automatic system build and test for
language ${lang}

mmorphlex_cvs lang generated compressed lexicon file

sproutproject_to_inst
all

out.dir, projectfile,
subgrammar, lang

generate an install package from .spj file
(s)

install_sprout_packa
ge

in.dir, out.dir install a generated install package

jtaco_batch run JTaCo in batch mode with a test text

Ant documentation for SProUT 7

5. Adding a new target to the central build file

You are hereby encouraged to do so, as long as the new target is relevant and
useful also for other SProUT users or developers. Alternatively, you could create
your private build file that calls dedicated targets in build.xml.

To see how to write targets, look at section “References/Official documentation” at
the end of this document.

IMPORTANT: Antdoc (the target that can be used to generate a documentation of
build.xml à la Javadoc) needs targets written in this form:

<!--#######target_name#################################->
<target name="target_name" description="desc. f. -projecthelp">
<!-- Description : Write here what the target does -->
<!--Parameter: ${Prop1} Description of Prop1-->
<!--Parameter: ${Prop2} Description of Prop2-->
 ...
<!--Parameter: ${Propn} Description's of Propn-->
...
</target>

Insert targets only under that line :
<property file="${basedir}/src/build.properties"/>
else very bad things can happen, because some variables of your target might not
been initialized .

Ant has got some limitations : Once an ant property has been set, it is immutable - it
can neither be changed nor cleared. However some of the types of ant "recursions"
(Ant invoking ant) allow for the wholesale inclusion or exclusion of properties to the
called Ant task. If you tell it to drop all properties, you then have to explicitly pass any
properties you didn't want dropped.
This is why if you write an target that will be called more as once from an other
target, you should put it in the build file "sub_build.xml", and call it from build.xml with
:

<ant antfile=“name_of_the_target“>
 <property name="property1" value="value_of_property1"/>
 <property name="property2" value="value_of_property2"/>
 ...
 <property name="propertyn" value="value_of_propertyn"/>
 ...
</ant>

Please follow these patterns – so everyone will be able to understand and see how
to use your target.

Ant documentation for SProUT 8

6. Creating your own build files

You may also create your own ant project definition files which may refer to the
central CVS-based build.xml using the <ant> task. You can overwrite selected
properties of the central build file, cf. section build.properties and other Properties
below.

7. Adding a new XTDL grammar to the CVS

The CVS directory for XTDL grammar has this structure :

src/grammar/xtdl/${subgrammar}/${lang}/
– lang is the two-letter ISO language code (cf. Appendix 1 – ISO 639

language code)
– subgrammar is the name of the language you wanted to add (e.g., ne for

named entity grammars)

The name of the main file of the default project should be : ${lang}.spj
The name of the main file of an other project should be : ${lang}_${project}.spj

If you follow this rule, you can use the targets defined in build.xml – so you can avoid
writing extra targets.

Example:
If the chunk grammar for Esperanto is located in

src/grammar/xtdl/chunk/eo/

and the main projectfile name is
src/grammar/xtdl/chunk/eo.spj

then you can simply compile the grammar with
./ant compile_grammar -Dlang=eo -Dsubgrammar=chunk

If the projectfile doesn't belong to the default project, but to the “intern” project, its
name is

src/grammar/xtdl/chunk/eo_intern.spj

And you can compile the grammar then with
./ant compile_grammar -Dlang=eo -Dsubgrammar=chunk -Dproject=intern

(to be extended for TDL, extended gazetteer, tokenizer)

8. build.properties and other Properties

There are at least 3 locations where properties can be defined:
a) on the command line

Ant documentation for SProUT 9

b) in the build.properties file
c) in the build.xml file

The general rule is that a property specified on command line overwrites a property
with the same name specified in the build.properties file which in turn overwrites a
property with the same name in the build.xml file. This default behavior can be
circumvented e.g. with special attributes in the antcall task, cf. the ant documentation
for details.

Typically, settings like the binary file repository location which are set only once for a
user environment (e.g. repository=local within DFKI NFS, or repository=net outside
DFKI NFS), go to the build.properties file, while target-specific properties like lang
are specified on command line. Most properties (parameters) in the build.xml targets
have a default value (like en for lang) which can be overwritten from outside.

9. Generating Documentation

The javadoc and javadoc_runtime targets create javadoc in ${apidoc.dir}.

Ant documentation for SProUT 10

The antdoc target generates an HTML documentation of the build file build.xml in
${doc.dir}/antdoc/ similar to Javadoc, Figure 2 shows an example. The antdoc target
may also be used for generating documentation of custom build files when specified
using the -Dantfile= and -Ddestdir= parameters.

10. Integration of the SProUT build file with Java IDEs

– Eclipse 3 JDT has built-in ant support. Choose ant as builder instead of the built-in
one. You will see available targets in a tree view, and properties may be defined
from within Eclipse JDT build definitions.

– there are similar plugins for JBuilder and probably also for NetBeans

11. Redirection of Ant Logging

Ant can be configured to output its target and task logging to log4j.

Ant documentation for SProUT 11

Figure 2 Documentation generated by antdoc

./ant -listener org.apache.tools.ant.listener.Log4jListener -Dlog4j.
configuration=file:src/config/log4j.cfg <target>

12. References/Official documentation

Ant manual (for Ant version 1.5.4)
http://sprout.dfki.de/documentations/ant/manual/index.html

Ant task guidelines
http://sprout.dfki.de/documentations/ant/ant_task_guidelines.html

Ant task reference (pdf)
http://sprout.dfki.de/documentations/ant/appendix_e.pdf

Ant in Anger
http://sprout.dfki.de/documentations/ant/ant_in_anger.html

FAQ
http://sprout.dfki.de/documentations/ant/faq.html

Troubleshooting
http://sprout.dfki.de/documentations/ant/problems.html

Ant resources (external links)
http://sprout.dfki.de/documentations/ant/resources.html

Related projects
http://sprout.dfki.de/documentations/ant/projects.html

External tools and tasks
http://sprout.dfki.de/documentations/ant/external.html

If you need to download and install ant, the official site is
http://ant.apache.org

13. CVS documentation

E.g., online book „Open Source Development with CVS“ (3rd edition):
http://cvsbook.red-bean.com/

Ant documentation for SProUT 12

Appendix A: ISO 639 codes (only selected codes, mostly European and Asian)

These codes should be used for language identifiers in CVS, ant target names and
lang property values.

af Afrikaans
ar Arabic
be Byelorussian
bg Bulgarian
br Breton
ca Catalan
cs Czech
cy Welsh
da Danish
de German
el Greek
en English
eo Esperanto
es Spanish
et Estonian
eu Basque
fa Persian
fi Finnish
fr French
fy Frisian
ga Irish

gd ScotsGaelic
gl Galician
ha Hausa
he Hebrew
hi Hindi
hr Croatian
hu Hungarian
id Indonesian
is Icelandic
it Italian
ja Japanese
ka Georgian
kl Greenlandic
kn Kannada
ko Korean
ku Kurdish
la Latin
lt Lithuanian
lv Latvian
mk Macedonian
mo Moldavian
mt Maltese

nl Dutch
no Norwegian
oc Occitan
pl Polish
pt Portuguese
rm Rhaeto-

Romance
ro Romanian
ru Russian
sa Sanskrit
sh Serbo-Croatian
sk Slovak
sl Slovenian
sq Albanian
sr Serbian
sv Swedish
tr Turkish
uk Ukrainian
vi Vietnamese
yi Yiddish
zh Chinese

Technical contents of ISO 639:1988 (E/F)
"Code for the representation of names of languages".
The Registration Authority for ISO 639 is Infoterm, Osterreichisches
Normungsinstitut (ON), Postfach 130, A-1021 Vienna, Austria.

Ant documentation for SProUT 13

Appendix B: Target Dependencies in build.xml (generated with ant2dot)

Ant documentation for SProUT 14

Appendix C: built-in properties

The first five properties are defined by ant, the rest are defined by the Java
VM that runs ant (see
http://java.sun.com/j2se/1.4/docs/api/java/lang/System.html#getProperties())

Property name description

basedir the absolute path of the project's basedir (as set with
the basedir attribute of <project>)

ant.file the absolute path of the buildfile
ant.version the version of Ant
ant.project.name the name of the project that is currently executing, it is

set in the name attribute of <project>
ant.java.version the JVM version Ant detected, currently it can hold the

values "1.1", "1.2", "1.3" and "1.4"
java.version Java Runtime Environment version
java.vendor Java Runtime Environment vendor
java.vendor.url Java vendor URL
java.home Java installation directory
java.vm.specification.version Java Virtual Machine specification version
java.vm.specification.vendor Java Virtual Machine specification vendor
java.vm.specification.name Java Virtual Machine specification name
java.vm.version Java Virtual Machine implementation version
java.vm.vendor Java Virtual Machine implementation vendor
java.vm.name Java Virtual Machine implementation name
java.specification.version Java Runtime Environment specification version
java.specification.vendor Java Runtime Environment specification vendor
java.specification.name Java Runtime Environment specification name
java.class.version Java class format version number
java.class.path Java class path
java.library.path List of paths to search when loading libraries
java.io.tmpdir Default temp file path

java.compiler Name of JIT compiler to use
java.ext.dirs Path of extension directory or directories
os.name Operating system name
os.arch Operating system architecture

Ant documentation for SProUT 15

Property name description

os.version Operating system version
file.separator File separator ("/" on UNIX)
path.separator Path separator (":" on UNIX)
line.separator Line separator ("\n" on UNIX)
user.name User's account name
user.home User's home directory
user.dir User's current working directory

Ant documentation for SProUT 16

