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Abstract
We present several extensions to the shallow text
processor SProUT, viz., (1) a fast imperfect unifia-
bility test, (2) a special form of sets together with a
polymorphic lazy and destructive unification opera-
tion, (3) a cheap form of negation, (4) a weak unidi-
rectional form of coreferences, (5) optional context-
free stages in the shallow cascade, (6) a compile time
type check, (7) compile time transition sorting under
subsumption, (8) several output merging techniques,
and (9) a compaction technique for lexical resources.
The extensions have been found relevant in several
projects and might be of importance to other sys-
tems, even to deep processing.

1 Introduction
In the last decade, a strong tendency of deploying
lightweight linguistic analysis to the conversion of
raw textual information into structured and valu-
able knowledge can be observed. Recent advances in
the areas of information extraction, text mining, and
textual question answering demonstrate the bene-
fit of applying shallow text processing techniques.
Systems employing such shallow techniques are as-
sumed to be considerably less time-consuming and
more robust than deep processing systems, but are
still sufficient to cover a broad range of linguistic
phenomena (Hobbs et al., 1997).

This paper centers around several extensions to
the shallow core engine of SProUT (Shallow Process-
ing with Unification and Typed feature structures),
a platform for the development of multilingual text
processing systems (Becker et al., 2002; Drożdżyński
et al., 2004). The extensions have been designed to
either retain or even to speed up the run time per-
formance of SProUT, and have been found useful
in several other projects which employ SProUT to
perform information extraction, hyperlinking, opin-
ion mining, and text summarization. The extensions
are worthwhile to be considered, not only by other
shallow text processors, but even by deep processing
engines.

1.1 SProUT

The motivation for developing SProUT came from
the need to have a system that (i) allows a flexi-
ble integration of different processing modules and

(ii) to find a good trade-off between processing ef-
ficiency and expressiveness of the formalism. On
the one hand, very efficient finite-state devices have
been successfully employed in real-world applica-
tions. On the other hand, unification-based gram-
mars are designed to capture fine-grained syntactic
and semantic constraints, resulting in better descrip-
tions of natural language phenomena. In contrast to
finite-state devices, unification-based grammars are
also assumed to be more transparent and more eas-
ily modifiable. Our idea now was to take the best
of these two worlds, basically having a finite-state
machine that operates on typed feature structures
(TFSs). Thus transduction rules in SProUT do not
rely on simple atomic symbols, but instead on TFSs,
where the left-hand side (LHS) of a rule is a reg-
ular expression over TFSs representing the recog-
nition pattern, and the right-hand side (RHS) is a
TFS specifying the output structure. Consequently,
equality of atomic symbols is replaced by unifiabil-
ity of TFSs and the output is constructed using TFS
unification w.r.t. a type hierarchy.

1.2 Structure of Paper

The paper is structured as follows. The next section
introduces XTDL, the formalism used in SProUT.
Sections 3–11 then describe the extensions. Each
of these sections explains the reasons for extending
SProUT and estimates potential costs or even sav-
ings in terms of space and time, resp. We also try to
motivate why these techniques might be of interest
to other systems and paradigms.

2 XTDL—The Formalism in SProUT

XTDL combines two well-known frameworks: typed
feature structures and regular expressions. We as-
sume a basic familiarity with these concepts here.

2.1 The Basis: TDL

XTDL is defined on top of TDL, a definition language
for TFSs (Krieger and Schäfer, 1994) that is used
as a descriptive device in several grammar systems,
such as Lkb (Copestake, 1999), Page (Uszkoreit et
al., 1994), or Pet (Callmeier, 2000). We use the
following fragment of TDL, including coreferences.

type-def → type ":=" avm "."
type → identifier



avm → term ( "&" term)∗

term → type | fterm | sterm | coref | collect
fterm → "[" [attr-val ("," attr-val)∗] "]"
sterm → "{" [term ("," term)∗] "}"
attr-val → identifier avm
coref → "#"identifier
collect → "%"identifier

Apart from the integration into the rule defini-
tions, we also employ this fragment in SProUT for
the establishment of a type hierarchy of linguistic
entities. In the example definition below, the morph
type inherits from sign and introduces four mor-
phosyntactically motivated attributes, together with
their corresponding values.

morph := sign & [POS atom,
STEM atom,
INFL infl,
SEGMENTATION *list*].

The next figure depicts a fragment of the type
hierarchy used in the example.
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2.2 The Regular Extension: XTDL
A rule in XTDL is straightforwardly defined as a
recognition pattern on the LHS, written as a regular
expression, and an output description on the RHS.
A label serves as a handle to the rule. Regular ex-
pressions over feature structures describe sequential
successions of linguistic signs. We provide a couple
of standard operators; see the EBNF below. Con-
catenation is expressed by consecutive items. Dis-
junction, Kleene star, Kleene plus, and optionality
are represented by the operators |, *, +, and ?, resp.
{n} following an expression denotes an n-fold repe-
tition, whereas {m,n} repeats at least m times and
at most n times. ∼ expresses negation.

rule → rulename ":>" regexp "->" avm [fun-op] "."
rulename → identifier
regexp → [∼]avm | "@seek(" rulename ")" |

"(" regexp ")" | regexp (regexp)+ |
regexp ("|" regexp)+ |
regexp {"*" | "+" | "?"} |
regexp "{" int [ "," int ] "}"

fun-op → ", where" coref "=" fun-app
("," coref "=" fun-app)∗

fun-app → identifier "(" term ("," term)∗ ")"

The choice of TDL as a basis for XTDL has a
couple of advantages. TFSs as such provide a rich

descriptive language over linguistic structures (as
opposed to atomic symbols) and allow for a fine-
grained inspection of input items. They represent a
generalization over pure atomic symbols. Unifiabil-
ity as a test criterion (viz., whether a transition is
viable) can be seen as a generalization over symbol
equality. Coreferences in feature structures describe
structural identity. Their properties are exploited in
two ways. They provide a stronger expressiveness,
since they create dynamic value assignments while
following the transitions in the finite-state automa-
ton, thus exceeding the strict locality of constraints
in an atomic symbol approach. Furthermore, coref-
erences serve as the means for information transport
into the output description on the RHS of a rule.
Finally, the choice of feature structures as primary
citizens of the information domain makes composi-
tion of processing modules simple, since input and
output are all of the same abstract data type.

2.3 Example

The XTDL grammar rule below may illustrate the
concrete syntax of the formalism. It describes a se-
quence of morphologically analyzed tokens of type
morph. The first TFS matches one or zero items (?)
with part-of-speech det. Then, zero or more adj
items are accepted (*). Finally, one or two noun
items ({1,2}) are consumed. The use of a variable
(e.g., #c) in different places establishes a coreference
(i.e., a pointer) between features. This example en-
forces, e.g., agreement in case, number, and gender
for the matched items. I.e., all adjectives must have
compatible values for these features. If the recog-
nition pattern on the LHS successfully matches the
input, the description on the RHS creates a feature
structure of type phrase. The category is coreferent
with the category noun of the right-most token(s)
and the agreement features result from the unifica-
tion of the agreement features of the morph tokens.

np :> morph & [POS det,
INFL [CASE #c, NUM #n, GEN #g ]] ?

(morph & [POS adj,
INFL [CASE #c, NUM #n, GEN #g ]] ) *

morph & [POS noun & #cat,
INFL [CASE #c, NUM #n, GEN #g ]] {1,2}

-> phrase & [CAT #cat,
AGR agr & [CASE #c, NUM #n, GEN #g ]].

3 Imperfect Unifiability Test

The challenge for the SProUT interpreter is to com-
bine regular expression matching with unification of
TFSs. Since regular operators such as Kleene star
can not be expressed as a TFS (no functional uncer-
tainty!), the interpreter is faced with the problem
of mapping a regular expression to a corresponding
sequence of input TFSs, so that the coreference in-
formation among the elements in a rule is preserved.
The solution is to separate the matching of regular
patterns using unifiability (LHS of rules) from the
construction of the output structure through unifi-
cation (RHS). The positive side effect is that the



unifiability test filters the potential candidates for
the space-consuming final unification.

Subsequently, a rule TFS with an instantiated
LHS pattern is constructed. A TFS representa-
tion of a rule contains the two features in and out.
In contrast to the in value in the matched input
TFS representation, the in value of the rule con-
tains coreference information. The value of out is
the TFS definition of the RHS of the rule. Given the
input TFS and the uninstantiated rule TFS, the uni-
fication of the two structures yields the final output
result.

As is the case for deep parsing, usually more than
90% of all LHS applications fail, and since we use
unification ∧ for testing unifiability, a lot of space
and time is wasted. However, the things are not
that bleak as they seem, since our unifier eliminates
redundant copying of TFSs through lazy incremental
copying to achieve a great deal of structure sharing
(see next section). Modified structures can be reset
using invalidate() which simply increments a global
generation counter, such that a modification in the
copy slot of a TFS is no longer considered. And so
unifiability testing of two conjunctive TFSs in the
early SProUT reduced to (⊥ denotes incompatible
information)

unifiable(TFS φ, TFS ψ) :⇐⇒
Bool success;
if φ ∧ ψ = ⊥

success := false;
else

success := true;
invalidate();
return success;

Nevertheless, about 90% of the run time in the in-
terpreter was due to the unification operation, may
it be used for unifiability testing or to build up RHS
structure. One might now argue that unifiability
testing should be as fast and cheap as checking sub-
sumption or equivalence, but this is not the case:
a correct unifiability test must record the effects of
type unification, i.e., must allocate memory. The
deeper reason why this is so comes from the use of
coreferences in unification-based grammars.

However, it is possible to implement an imper-
fect , but extremely fast unifiability test that does
not require the space of standard unification. The
test is imperfect in that there are very rare combina-
tions of feature structures which are assumed to be
unifiable, but which are not. Such combinations are
detected later in the construction of the RHS of a
rule when performing standard unification. The im-
portant thing, however, as explained above, is that
almost all unifiability tests during grammar inter-
pretation fail and for these negative cases, the fast
test delivers a correct answer. During thorough ex-
periments with the new unifiability test, even the
positive answers were always right, i.e., subsequent
RHS unifications had not failed.

The structure of the new algorithm is similar to
the subsumption/equivalence test in SProUT, ex-
cept that type subsumption/equality is substituted
by type unification which reduces to a table lookup
(note that the pseudo code is slightly simplified and
does not work for cyclic structures):

unifiable(TFS φ, TFS ψ) :⇐⇒
if φ = ψ

return true;
if unifyTypes(φ, ψ) = ⊥

return false;
forall 〈feat . φ′〉 ∈ φ and 〈feat . ψ′〉 ∈ ψ

if ¬unifiable(φ′, ψ′)
return false;

return true;

Compared to the old test, we achieved a speedup
by a factor of 5.5–8, depending on different shallow
grammars. It is worth noting that this imperfect
test is related to another imperfect technique used in
deep parsing, viz., quick-check filtering (Kiefer et al.,
1999). Our method does not require offline training
and additional data structures (which quick-check
filtering does) and is comparable in performance
when using mainly flat TFSs (which is the case for
shallow grammars).

4 Polymorphic Lazy Set Unification

The original destructive lazy-copying unifier in
SProUT was an optimized and corrected variant of
(Emele, 1991) that was further extended by an effi-
cient type unification operation, viz., bit vector bit-
wise AND on the type codes, together with result
caching. The average-case complexity of computing
the greatest lower bound (= result of type unifica-
tion) is thus determined by a constant-time function.

Compared to the implementation of the origi-
nal algorithm in (Emele, 1991), our improved ver-
sion yields a speedup of 2–4.5 (depending on the
shallow grammars) by computing the shared and
unique feature-value pairs SharedArcs1, SharedArcs2,
UniqueArcs1, and UniqueArcs2 of the two input struc-
tures in parallel (plus further minor improvements).
This new unifier together with the imperfect unifia-
bility test drastically speed up system performance,
turning the original ratio of unification/interpreter
time from 90/10 to 25/75. Overall, the two modifi-
cations lead to a speedup factor of 20 on the average.

During the development of SProUT, it turned
out that the description language XTDL misses con-
structs that assist unordered collections of informa-
tion. Clearly, FIRST/REST lists in conjunctive TFS
are the usual means to achieve this. However, by
unifying two lists, we do not collect the sole infor-
mation from both lists. Instead, the corresponding
positions are unified, and lists of different length will
never unify. Applications such as information ex-
traction must work around this ‘phenomena’ and ei-
ther apply fixed-arity named templates, implement
difference list to achieve a kind of set union, apply



recursive type constraints, implement procedural at-
tachment, or employ disjunctions as a way to express
collective information. Explicit disjunctions in the
TFS description language, however, have been con-
sciously excluded, since they render almost linear
(conjunctive) unification exponential.

In order to account for unordered collections, we
decided to implement a special kind of non-standard
sets, viz., multisets (or bags), which might contain
equivalent, even equal objects. Elements of a set are
either TFSs or again sets, even the empty set. Uni-
fying two sets S1, S2 means to take multiset-union
of S1 and S2:

S1 &S2 := S1 ∪ S2

This is an extremely cheap operation (even
cheaper than normal set union) and is exactly what
we need.

Sets should not be confused with disjunctions,
since the unification of two disjunctions D1, D2 is
defined in terms of the unification of their elements,
a very expensive operation:

D1 &D2 := {d1 & d2 | d1 ∈ D1 and d2 ∈ D2}

Up to now, we only considered the two cases that
the unification method either takes two TFSs or two
sets. But what is the result of unifying a TFS φ with
a multiset S? We decided to open a third avenue
here—this time we assume that the TFS argument
acts as a filter on the elements of the multiset using
unifiability. I.e., a unification failure leads to the
deletion of the set element:

φ&S := {s | s ∈ S and φ& s 6= ⊥}

This useful operation has, like ‘normal’ set unifica-
tion, a counterpart in Lexical Functional Grammar
(Bresnan, 1982). And again, it is relatively cheap,
due to the use of the fast unifiability test.

Given these additions, unification now becomes
a true polymorphic operation (and is realized this
way in our Java implementation through method
dispatching):

& TFS set

TFS ∧ ∈&

set ∈& ∪

Note the subtle differences when using singleton
sets. Assuming that

φ&ψ = ⊥

we have

φ& {ψ} = {φ}&ψ = ∅

but

{φ}& {ψ} = {φ, ψ}

The important point is that the unifier in SProUT
can be straightforwardly extended towards our spe-
cial treatment of sets, without giving up any of the
good properties of the original algorithm, viz., lazy
non-redundant copying and almost linear run time

complexity. And the good properties of the imper-
fect unifiability test can also be retained for multi-
sets.

We are currently investigating to include a
C(++)-like malloc allocation scheme for TFSs which
should have a drastic effect on the turnwise run time
performance of SProUT. The idea is to avoid the
creation of new TFS objects and the application of
Java’s garbage collector, if possible, by having our
own TFS memory management. TFSs which are no
longer relevant and which should be reused must be
freed so that the allocator can take care of. If new
TFSs are requested by unification, we first reuse the
old objects before creating new ones.

5 Testing Negation

Negation in typed feature formalisms has often
posed severe problems, either because of a complex
or even wrong semantics, or because of a bad run-
time performance. Classical negation of conjunctive
TFS leads to the introduction of disjunctions (not
that good as we have seen above), negated coref-
erences (easy!), and negated atoms/types (cheap!)
when assuming negation normal form (Smolka,
1988). In case that negated information should be
retained and accumulated in the TFS, additional
memory must be allocated.

Several SProUT users have demanded that it
would be nice to come up with some form of nega-
tion in order to compactly rule out certain input
items. Clearly, when considering only types, nega-
tion can be laboriously spelled out through the intro-
duction of additional types. For instance, the type
not-1st (or 2nd-or-3rd) might be introduced un-
der type person with subtypes 2nd and 3rd, in order
to “reformulate” the negated TFS [pers ∼ 1st].

We have decided to allow negation only on the
LHS of a SProUT rule and only on top of a de-
scription. These requirements have several theo-
retical and practical advantages. Firstly, restrict-
ing ourselves to the LHS means that we only test
whether an input item meets the negated informa-
tion or not. As we will see, this test is extremely
cheap and does not require additional memory. Sec-
ondly, since negation inside a TFS is forbidden, no
additonal memory must be spent to represent that
information. As a consequence of the LHS restric-
tion, negated information is clearly no longer acces-
sible after a successful LHS match. In a SProUT
rule, positive and negative information can be arbi-
trarily mixed, and a top-level negation sign can be
attached to types, TFSs, and even to coreferences.

Now, how does the negation test look like? When
assuming a classical set-theoretical semantics for
TFSs (as we do), the answer is really easy. Assume
that the SProUT rule under inspection at a current
input position contains the negated feature struc-
ture ∼ φ and that the TFS for the input token is ψ.
Testing for negation means that we want to decide
whether ∼ φ ∧ ψ = ⊥ . The Venn diagram gives us



the answer (let [[·]] refers to the denotation of a TFS
and let U represents the universe of all denotations):

U

[[∼φ]] = U \ [[φ]]

[[φ]]

∼ φ ∧ ψ is not satisfiable, i.e., [[∼ φ ∧ ψ]] = ∅ iff
[[ψ]] ⊆ [[φ]]. This means that

∼ φ ∧ ψ = ⊥ ⇐⇒ ψ v φ

I.e., only if ψ is more specific than or equivalent
to φ (v), rule interpretation has to be canceled. In
every other case, there must exist elements in the
denotation of ψ which are not in φ, i.e.,

[[ψ]] \ [[φ]] 6= ∅

hence rule interpretation is allowed to continue.
Testing for TFS subsumption (v) is again an ex-
tremely cheap operation.

6 Weak Unidirectional Coreferences

Several projects using SProUT have revealed a miss-
ing descriptive means in the original formalism. This
no man’s land concerns the accumulation of infor-
mation under Kleene star/plus or restricted repeti-
tion. Consider, for instance, the np rule from section
2.3 and assume that adjectives also have a relation
attribute RELN. Our intention now is to collect all
those LHS relations and to have them grouped in
a set (section 4) on the RHS of the rule. In order
to achieve this, we have implemented the concept of
a weak, unidirectional coreference constraint, indi-
cated by the percent sign in the concrete syntax:

np :> ... (morph & [POS adj, ..., RELN %r])* ...
-> phrase & [..., RELN %r]

A usual coreference tag, say #r (instead of %r) would
enforce that the iterated values under RELN attribute
are the same.

Collecting the LHS information in a set (instead
of a list) perfectly matches our treatment of set uni-
fication: the result set on the RHS can be further
processed and extended by succeeding stages in the
shallow processing cascade. Recall that lists do not
(easily) allow the accumulation of information (cf.
section 4).

Implementing such weak coreferences is not that
difficult and again extremely cheap. During Kleene
expansion and restricted repetition, the rule inter-
preter introduces for each successful TFS instan-
tiation and each occurrence of % a fresh variable
which binds the value under the corresponding fea-
ture (in our case RELN). Consider, for instance, that
the above np has matched two adjectives, before it
has recognized the noun. The interpreter thus gen-
erates two bindings through the new variables #r 1

and #r 2 and constructs the set {#r 1, #r 2} after
a successful LHS match, as if the original RHS would
have been

phrase & [..., RELN {#r_1, #r_2} ]

7 Context-Free Cascade Stages

SProUT permits to call additional rules during the
course of a single rule interpretation (like a call to a
subprocedure in a programming language) through
the use of the seek operator. There are no objec-
tions for a rule to call itself, what clearly extends the
expressiveness of the formalism, making it context-
free (like the related recursive transition networks
(Conway, 1963) are). The use of SDL (Krieger,
2003) together with context-free stages even allows
SProUT to recognize context-sensitive languages.

The following example presents a simple grammar
that matches n occurrences of “a” followed by n oc-
currences of “b” and counts n by representing it as
a list of n bars |. Considering the recognition part
of the rule, {anbn | n > 0} is, in fact, a context-free
language.

S :> a (@seek(S) & [COUNT #1])? b
-> [COUNT <"|" . #1>].

Note that we represent “a” and “b” as types a and
b, whose surface form is “a” and “b”, resp.

a := token & [SURFACE "a"].
b := token & [SURFACE "b"].

In some special cases, a sequence of seek calls can
generate a rule cycle. Of course, if no input is con-
sumed within a cycle of seek calls, we end up in an
infinite loop at runtime. To avoid such a situation,
we implemented a special left-recursion check that
is performed during the compilation of the gram-
mar and which generates a compile time error, if
the grammar contains infinite cycles of seek calls.

Concerning runtime performance, there are two
aspects to be considered when using seek. Firstly,
regular languages which are specified with the help
of seek can be rewritten using only regular opera-
tors. In such cases, the efficiency of a system which
provides seek although a grammar does not use it is
on par with an implementation that does not have
the possibility of calling seek. For each automaton
state, our system is given a disjoint partition of out-
going edges, viz., a set of seek edges and a set of
non-seek edges. These sets are computed at compile
time and testing for an empty seek set is negligible.
Secondly, applying seek at runtime forces the inter-
preter to produce new binding environments. To
improve efficiency here, we introduced an optimiz-
ing mechanism for seek calls. The compiler tries to
replace seek calls with the body of the called rule
in case the RHS of the rule is empty (not possible
in case of a circle). There exist several other config-
urations which are recognized by the compiler and



which obviates the generation of new environments.
Such optimizations make the compiled finite-state
automaton larger, but can lead to a speedup of up
to 30%, depending on the grammar.

8 Compile Time Type Check

The basic building blocks of SProUT rules are typed
feature structures. A compile time type check has
been added to the system, checking appropriateness
of features, welltypedness of feature structures, and
strong typing of rule definitions.

(Carpenter, 1992) introduces formal definitions
for appropriateness and welltypedness. Informally, a
feature in a TFS is said to be appropriate if the type
bearing it or one of the supertypes introduces the
feature. A SProUT rule meets the appropriateness
condition if every feature, relative to the TFS it oc-
curs in, is appropriate. A SProUT rule is well-typed
if every feature that occurs is appropriate and has an
appropriate value, i.e., a value that is subsumed by
the value of the feature of the type that introduces
that feature. Finally, we say that a SProUT rule is
strongly typed if every feature structure, occurring in
it and bearing at least one feature, also has a type
that is more specific than the most general type of
the type hierarchy.

To sum up, strong typing, appropriateness, and
welltypedness conditions impose additional con-
straints on typed feature structures occurring in
rules. These restrictions are defined in and im-
posed by the TDL type hierarchy associated with
the rule grammar. Practical advantages of these
meta-constraints in grammar formalisms (not even
in SProUT) are threefold (there are others as well,
such as type inference; cf. (Schäfer, 1995)).
Debugging, safety and maintainability. Con-
ceptual or typographical errors in SProUT rules
(e.g., feature names or types) are likely to be de-
tected at compile time, due to the above restrictions.
Portability of grammars. Many implemented
TFS formalisms require feature structures to meet
some of the above conditions. Grammars written for
a less restricted formalism may not work on systems
requiring appropriateness without major changes.
Efficiency. Generally, strong typing and restriction
to a fixed set of features can be exploited for compact
representations. We give a small example where type
checking at compile time leads to efficiency gains at
runtime by revealing impossible unifications. Given
the following SProUT rules

S :> ..... -> z & [ ... ].
U :> @seek(S) & x & [ ... ] -> ... .
V :> @seek(S) & y & [ ... ] -> ... .

and assume that z ∧ x 6= ⊥, but z ∧ y = ⊥. Compile
time type checking then uncovers that the LHS of
rule V is inconsistent under all possible interpreta-
tions. Related to this technique is rule filtering in
deep parsing (Kiefer et al., 1999) and partial evalu-
ation, known from logic programming.

For appropriateness checking, the system builds
up a table of features that are admissible for a type
when reading in type definitions. Welltypedness is
checked on the basis of prototypical feature struc-
tures that are associated with each type defined in
the type hierarchy. Checking welltypedness, appro-
priateness, and strong typing is achieved by recur-
sively walking through a SProUT rule (represented
in an intermediate XML expression which in turn
has been generated on the basis of a JavaCC parser
for XTDL), checking types and features at every fea-
ture structure node. Error messages with detailed
reasons and links to character positions in XTDL
source files are generated.

In addition to the type check, a unification of in-
compatible types (conjunction of types with the &
operator) in type expressions is signaled, and an in-
formation is issued when two types in a conjunc-
tive type expression have a common subtype in the
type hierarchy. Furthermore, the seek operator un-
dergoes a special handling: For appropriateness and
welltypedness checking, the output type and feature
structure of the called SProUT rule is computed,
and checked together with the feature structure (if
present) of the calling part.

9 Transition Sorting

Since XTDL grammars are compiled into finite-state
devices whose edges are labeled with TFSs, the stan-
dard finite-state optimization techniques can not be
exploited directly. The application of conventional
determinization and minimization neither reduces
the size, nor the degree of nondeterminism of the
finite-state network significantly.

Instead of applying these optimizations to non-
atomic TFS-labeled edges, we have introduced a
technique for ordering the outgoing edges of an au-
tomaton state, which resembles topological sorting
of acyclic graphs. To be more precise, we sort all
outgoing transitions of a given state via the compu-
tation of a transition hierarchy under TFS subsump-
tion. Obviously, such an ordering can be computed
offline, since edge labels do not change at run time.
In the process of traversing an extended finite-state
grammar, these transition hierarchies are utilized for
inspecting outgoing transitions from a given state,
starting with the least specific transition(s) first (re-
member, TFS subsumption induces only a partial
order), and moving downwards in the hierarchy, if
necessary. The important point now is that if a
less specific TFS does not match, the more specific
ones will not match as well, hence the correspond-
ing edges need not be inspected (the fast unifiability
test is employed here as well).

In this manner, the number of time-consuming
unifications can be potentially reduced. Our initial
experiments reveal that the utilization of this data
structure, in particular, comes in handy in case of
the initial state and its close neighbors (the initial
state in one of our test grammar had about 700 out-



going transitions).
However, since most of the states have only two

outgoing edges on the average, the application of
transition sorting to all states is not a good idea in
terms of efficiency. Therefore, a threshold on the
number of outgoing arcs is used in order to clas-
sify states for which the transition sorting is applied.
Due to the fact that transition hierarchies, created
solely from the arcs in the grammar, exhibit a some-
what flat character (average depth: 2–3), we provide
a further option for deepening and fine-tuning them
through a semi-automatic introduction of artificial
edges.

Firstly, for each major type which occurs in the
grammar, e.g., morph, token, and gazetteer, nodes
in the transition hierarchy are introduced. Sec-
ondly, for all appropriate features f of a given major
type t and all feature-value pairs [f v1], . . . , [f vk]
found in the grammar, we introduce additional
nodes in the transition hierarchy, representing t& ∼
[f {v1, . . . , vk}], i.e., TFSs whose f value is different
from v1, . . . , vk. Finally, for all TFSs t& [f vi], we
compute a separate table of links to the correspond-
ing least specific nodes.

These rough extensions allow for an efficient
traversal of the hierarchy while processing input
TFSs like for instance t′ & [. . . , f v] (t′ v t). Tran-
sition sorting, as briefly introduced here, proves to
speed up the grammar interpreter by a factor of 3–4.
The proximate paper (Krieger and Piskorski, 2004)
gives a deeper insight into the application of this and
related techniques.

10 Output Merging Techniques

Shallow analysis in SProUT (and other IE systems)
often yields multiple results for a single recognized
chunk, originating from different ambiguity sources.
Local ambiguities. The lexicon contains mor-
phosyntactic (e.g., gender, number, person) and se-
mantic (senses) variations which might blow up the
search space of the grammar interpreter, resulting
in multiple readings. There exist, however, several
techniques which help to lower the ambiguity rate by
compacting and unifying lexicon entries (see next
section). Typed feature structures are a necessary
requirement for applying such techniques.
Spurious ambiguities. Depending on the form
of the grammar, multiple recursive rule calls might
lead to attachment ambiguities which however pro-
duce equivalent RHS structures. In case we are only
interested in the output (which usually is the case),
we are allowed to remove such duplicate TFSs.
Rule ambiguities. We have often encountered rule
sets, which, for specific input items, produce output
structures that are related according to their degree
of informativeness. I.e., we have found structures
within these results which are more general or more
specific than others.

In each of the above cases, we locally reduce the
number of output TFSs for a fixed input span with-

out giving up any information. This is achieved
by the virtue of TFS equivalence, TFS subsump-
tion, and TFS unifiability/unification. In SProUT, a
user can specify (i) whether the output TFS are left
untouched, (ii) whether duplicate structure should
be removed, (iii) whether the most general/specific
structures only prevail, or (iv) whether we maxi-
mally integrate the output structures through unifi-
cation. Very often, a single TFS remains at the end.
Due to the fact that the SProUT interpreter em-
ploys a longest-match strategy, further ambiguities
are avoided at this stage.

Merging is only applied at the very end of a sin-
gle stage in the shallow cascade, and thus not very
expensive overall. Worst-case running time is a
quadratic function in the number of output struc-
tures. The TFS operations involved in this merging
are cheap, as explained in the previous sections.

11 Compacting Lexical Resources

Morphological resources in SProUT are usually built
on top of the full form lexical databases of MMorph.
However, many lexical entries in MMorph possess
spurious ambiguities. When integrating MMorph
lexicons as they are, a runtime system might have
a serious space problem, and in particular, performs
redundant unifications.

We have developed a method which compacts
MMorph resources by replacing several readings
through a compact reading, by deleting redundant
readings, and by substituting specialized readings
through more general ones, using type generaliza-
tion and subsumption checking. These techniques
go hand in hand with a moderate enlargement of the
original type hierarchy (no additional costs—recall
that average-case complexity of type unification can
be estimated by a constant-time function) and in-
crease the efficiency of systems using MMorph, since
they shrink the size of the lexicon and come up with
fewer readings for a morphological form. Clearly,
such an approach not only is interesting to MMorph,
but also to other lexicons, which build on an feature-
value representation of lexical information.

Entries in MMorph relate word forms to their
base forms and their morphosyntactic descriptions
(MSDs), which are sets of flat feature-value pairs.
Here are two of the 11 MMorph readings of the Ger-
man word “evaluierten” (to evaluate, evaluated):

Verb[mode=indicative vform=fin tense=imperfect
number=plural person=1|3 ...]

Adjective[gender=masc|fem|neutrum number=singular
case=nom|gen|dat|acc degree=pos ...]

MMorph represents atomic disjunctions by using
the vertical bar, e.g., 1|3 (see example). We rep-
resent such disjunctions through exhaustive disjunc-
tive types, e.g., 1st or 3rd, together with proper
type definitions, e.g.,

1st := 1st_or_2nd & 1st_or_3rd



These types are automatically generated by our
method when reading in an MMorph data base.

Given a full form database, we store information
for the same word form (example: evaluierten) in an
index structure of the following form (POS abbrevi-
ates part of speech):

word form → POS1 → stem11 → set of MSDs
. . . . . .

stem1m → set of MSDs
. . . . . . . . .

POSn → stemn1 → set of MSDs
. . . . . .

stemnk → set of MSDs

An MSD is encoded as a table of the following
form:

feature1 → set of appropriate values
. . . . . .

featurel → set of appropriate values

Given the set of all MSDs M for a specific word
form, the compaction method applies the following
operations to m1,m2 ∈ M , until M remains con-
stant (i.e., until a fixpoint is reached):
Equality test. If m1 = m2, remove m1 from M .
Subsumption test. If the set of values for features
in m1 is a subset of values of features in m2, remove
m1 from M (m2 is more general than m1).
Set union. Ifm1 differs fromm2 at only one feature
f , then merge the two values, remove m1 from M ,
and replace the value of f in m2 by v, where v :=
m1@f ∪ m2@f denotes the union of the two sets
(generalize m1 and m2).

After applying the compaction method to the Ger-
man lexicon in DNF, the average number of readings
dropped from 5.8 (in DNF) to 1.6 (with additional
types), whereas the original German MMorph lexi-
con had 3.2 readings on the average (recall that the
original MMorph entries employed atomic disjunc-
tions). The most drastic improvements are obtained
for adjectives: 4.0 (original lexicon) vs. 1.7 readings
(compacted lexicon). The size of the new lexicon is
less than one third of the old in DNF: 0.86 GByte vs.
0.25 GByte. Only 195 type definitions are produced
by the above method for the German lexicon. Over-
all, the average speedup measured for the German
named entity grammars in SProUT was about a fac-
tor of 3. A thorough investigation of the approach
is presented in (Krieger and Xu, 2003).

We are currently investigating the impact of pack-
ing morphosyntactical information across several
features-value pairs. Our automated compaction
method can be easily extended to handle such super-
features/-values.
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U. Schäfer. 1995. Parametrizable type expansion for
TDL. Master’s thesis, Universität des Saarlandes, De-
partment of Computer Science, November.

G. Smolka. 1988. A feature logic with subsorts. LILOG
Report 33, WT LILOG–IBM Germany.

H. Uszkoreit, R. Backofen, S. Busemann, A.K. Diagne,
E.A. Hinkelman, W. Kasper, B. Kiefer, H.-U. Krieger,
K. Netter, G. Neumann, S. Oepen, and S.P. Spack-
man. 1994. DISCO—an HPSG-based NLP system
and its application for appointment scheduling. In
Proc. 15th COLING, pages 436–440.


