
A Multilingual Content Production Tool
for the Semantic Web

Witold Dro�d�y�ski, Hans-Ulrich Krieger, Jakub Piskorski, Ulrich Schäfer

DFKI GmbH
Stuhlsatzenhausweg 3,

66123 Saarbrücken, Germany

{witold,krieger,piskorsk,uschaefer}@dfki.de

1. INTRODUCTION
Automatic content extraction from unrestricted textual data

constitutes a core technology for semantic web services.
Intelligent content extraction must furthermore address the
pecularities of the medium, i.e., must analyze natural language
to a certain depth, in order to go beyond the realm of pure
keyword-base approaches. This demo presents SProUT – a
novel general-purpose multilingual information extraction (IE)
platform [1]. The main motivation for its development comes
from the need of having one modular system for multilingual &
domain-adaptive IE, which is portable across different
platforms. We also had to find a balance between efficiency and
expressiveness of the grammar formalism.

SProUT is equipped with a set of reusable online
processing components for basic linguistic operations, ranging
from tokenization to text coreference resolution. They can be
combined into a pipeline that produces several streams of
linguistically annotated structures, which on the other hand
serve as an input for the grammar interpreter, applied at the next
stage.

Currently SProUT has been adapted to processing 11
languages, including major Germanic, Romance, Slavonic, and
Asian languages. It has been deployed as the core IE component
in several industrial and research projects [1]. In our
presentation we showcase the development of the NE-
recognition engine on top of SProUT for German and Polish
[2].

2. GRAMMAR FORMALISM
The grammar formalism in SProUT is a blend of very

efficient finite-state techniques and unification-based
formalisms, guaranteeing expressiveness and transparency. To
be more precise, a grammar in SProUT consists of
pattern/action rules, where the LHS of a rule is a regular
expression over typed feature structures (TFS) with functional
operators and coreferences, representing the recognition pattern,
and the RHS of a rule is a TFS specification of the output
structure. Coreferences express structural identity, create
dynamic value assignments, and serve as a means of
information transport. Functional operators provide a gateway
to the outside world, and they are utilized for introducing
complex constraints in the rules, for forming the output of a
rule, and for integrating external processing components.

Grammars consisting of such rules are compiled into
extended finite-state networks with rich label descriptions

(TFSs). For their efficient processing, a handful of methods
going beyond standard finite-state techniques have been
introduced [3]. Grammar rules can even be recursively
embedded, which in fact provides grammarians with a context-
free formalism. The following rule for the recognition of
prepositional phrases gives an idea of the syntax of the grammar
formalism:

pp :> morph & [POS Prep, SURFACE #prep,
 INFL [CASE #c]]
 (morph & [POS Adjective,
 INFL [CASE #c,
 NUMBER #n,
 GENDER #g]]) *
 (morph & [POS Noun, SURFACE #noun1,
 INFL [CASE #c,
 NUMBER #n,
 GENDER #g]])
 (morph & [POS Noun, SURFACE #noun2,
 INFL [CASE #c,
 NUMBER #n,
 GENDER #g]]) ?
-> phrase & [CAT pp, PREP #prep,
 AGR agr & [CASE #c,
 NUMBER #n,
 GENDER #g]
 CORE_NP #core_np]],
where #core_np=Append(#noun1,” “,#noun2).

The first TFS matches a preposition. It is followed by zero
or more adjectives. Finally, one or two noun items are
consumed. The variables #c, #n, #g establish coreferences,
expressing the agreement in case, number, and gender for all
matched items (except for the initial preposition item which
solely agrees in case with the other items). The RHS of the rule
triggers the creation of a TFS of type phrase, where the surface
form of the matched preposition is transported into the
corresponding slot via the variable #prep. The value for the
attribute CORE_NP is created through a concatenation of the
matched nouns (variables #noun1 and #noun2). This is
realized via a call to functional operator Append.

3. STRUCTURED I/O INTERFACES
A generic XML input and output interface supports

integration of foreign NLP components as input source for
SProUT grammars, as well as XML output of SProUT results,
including optional XSL transformation. SProUT grammars can
also be cascaded using this XML interface or using the native
feature structure interface (see section 4).

There are several ways in which SProUT can use and
produce standard Semantic Web formats. (1) Via the described
XML interface, RDF or other XML markup can be used as
input for grammars. (2) RDF and XML markup can be
generated by SProUT, using the XSLT output interface. (3) At

European Conference on Knowledge Engineering and Knowledge
Management (EKAW’04), October 5–8, 2004, Northamptonshire, UK.
Copyright resides with the author(s) of this manuscript.

compile time, RDF definitions, e.g., for ontologies or
taxonomies, can be compiled into TDL type definitions (TDL is
the underlying typed feature formalism) [4] which can then be
referred to in grammars or gazetteer definitions, turning
SProUT into a declarative and hence elegant ontology-text
interface device.

4. SDL
SProUT is shipped together with SDL, a description

language that supports the declarative specification of NLP
systems [5]. The building blocks of an SDL expression are
existing modules, such as tokenizer, gazetteer, or named entity
grammars. These modules can be connected via three operators,
expressing sequence, parallelism, and unrestricted repetition.
The SDL compiler generates Java codes which might be
executed directly or integrated into a larger system. Interaction
between modules is decoupled by a mediator. The usual control
flow in a shallow cascaded system can be realized using the
sequence operator. Other more advanced architectures utilize
the other two operators [6].

5. DEVELOPMENT ENVIRONMENT
SProUT comes with an integrated graphical development

and testing environment. The grammars can be either created in
a TDL or in an XML editing mode, and can be visualized in a
graphic mode. The grammar GUI resembles state-of-the-art
development environments for programming languages, e.g.,
errors and warnings listed in the error message window are
linked to the corresponding piece of grammar in the editor.
Several user interfaces for inspecting the output of the linguistic
processing components and for testing the grammars are
provided, as shown in figure 1.

6. ACKNOWLEDGEMENTS
The development of the presented demo has been partially

funded by the German BMBF, under grant no. 01 IW C02
(project QUETAL), and by additional non-financed personal
effort of the authors.

7. REFERENCES

[1] W. Dro�d�y�ski, H.-U. Krieger, J. Piskorski, U. Schäfer,

F. Xu. Shallow Processing with Unification and Typed
Feature Structures – Foundations and Applications. In
German AI Journal Künstliche Intelligenz, Vol. 1/04,
www.kuenstliche-intelligenz.de/archiv/2004_1/sprout-
web.pdf, 2004.

[2] J. Piskorski. Rule-based Named-Entity Recognition for
Polish. In Proceeding of the Workshop on Named-Entity
Recognition for NLP Applications held in conjunction
with IJNLP 2004, Sanya, Hainan Island, China.

[3] H.-U. Krieger, W. Dro�d�y�ski, J. Piskorski, U. Schäfer,
F. Xu. A Bag of Useful Techniques for Unification-Based
Finite-State Transducers. In Proceedings of KONVENS
2004, Vienna, Austria.

[4] Hans-Ulrich Krieger and Ulrich Schäfer. TDL - A Type
Description Language for Constraint-Based Grammars. In
Proceedings of the 15th COLING, 893-899, 1994.

[5] Hans-Ulrich Krieger. SDL - A Description Language for
Building NLP Systems. In Proceedings of the HLT-
NAACL Workshop on the Software Engineering and
Architecture of Language Technology Systems (SEALTS),
84-91, 2003.

[6] Anette Frank. Constraint-based RMRS Construction from
Shallow Grammars. In Proceedings COLING, 2004.

Figure 1. The SProUT IDE

