Efficient Parameterizable Type Expansion
for Typed Feature Formalisms*

Hans-Ulrich Krieger

Ulrich Schafer

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany

phone: +49 681 302-5299

fax: +49 681 302-5341

{krieger,schaefer}@dfki.uni-sb.de

Abstract

Over the last few years, constraint-based gram-
mar formalisms have become the predominant
paradigm in natural language processing and
computational linguistics. From the viewpoint
of computer science, typed feature structures
can be seen as data structures that allow the
representation of linguistic knowledge in a uni-
form fashion. Type expansion is an operation
that makes constraints of a typed feature struc-
ture explicit and determines its satisfiability.
We describe an efficient expansion algorithm
that takes care of recursive type definitions and
permits the exploration of different expansion
strategies through the use of control knowledge.
This knowledge is specified on a separate layer,
independent of grammatical information. The
algorithm, as presented in the paper, has been
fully implemented in CoMMON LISP and is an
integrated part of the typed feature formal-
ism TDL that is employed in several large NL
projects.

1 Introduction

Over the last few years, constraint-based grammar for-
malisms [Shieber, 1986] have become the predominant
paradigm in natural language processing and computa-
tional linguistics. While the first approaches relied on
annotated phrase structure rules (e.g., PATR-II [Shieber
et al., 1983]), modern formalisms try to specify gram-
matical knowledge as well as lexicon entries entirely
through feature structures. In order to achieve this
goal, one must enrich the expressive power of the first
unification-based formalisms with different forms of dis-
junctive descriptions. Later, other operations come into
play, e.g., (classical) negation.

This work was funded by the German Federal Ministry
of Education, Science, Research, and Technology as part of
the Verbmobil project. We are grateful to three anonymous
IJCALI reviewers for helpful comments.

However the most important extension to formalisms
consists of the incorporation of types, for instance in
modern systems like TFS [Zajac, 1992], CUF [Dérre
and Dorna, 1993], or 7DL [Krieger and Schifer, 1994].
Types are ordered hierarchically as is known from object-
oriented programming languages, a feature heavily em-
ployed in lexicalized grammar theories like Head-Driven
Phrase Structure Grammar (HPSG) [Pollard and Sag,
1987]. This leads to multiple inheritance in the descrip-
tion of linguistic entities. In general, not only is a type
related to other types through the inheritance hierar-
chy, but is also provided with feature constraints that
are idiosyncratic to this type. Hence, a type symbol can
serve as an abbreviation for a complex expression and
an untyped feature structure becomes a typed one. If a
formalism is intended to be used as a stand-alone sys-
tem, it must also implement recursive types if it does
not provide phrase-structure recursion directly (within
the formalism) or indirectly (via a parser/generator).!
In addition, certain forms of relations (like append) or
additional extensions of the formalism (like functional
uncertainty) can be nicely modelled through recursive
types.

Now, because types allow us to refer to complex con-
straints through the use of symbol names, we need an
operation that is responsible for deducing the constraints
that are inherent to a type. This means, reconstructing
the idiosyncratic constraints of a type, plus those that
are inherited from the supertypes. We will call such
a mechanism type ezpansion (TE) or type unfolding.?
Thus TE is faced with two main tasks:

1. making some or all feature constraints explicit (type

!For instance, ALE employs a bottom-up chart parser,
whereas TFS relies entirely on type deduction. Note that
recursive types can be substituted by definite clauses (equiv-
alences), as is the case for CUF, such that parsing/generation
roughly corresponds to PROLOG’s SLD resolution.

It is worth noting that our notion of TE shares simi-
larities with Ait-Kaci’s sort unfolding [Ait-Kaci et al., 1993]
and Carpenter’s total well-typedness [Carpenter, 1992, Ch. 6].
However, the latter notion is not well-defined for true recur-
sive typed feature structures in that such structures cannot
be totally well-typed within finite time and space.



€Xpansion 1S a structure-bpullding operation)

2. determining the global consistency of a type or more
generally, of a typed feature structure

Types not only serve as a shorthand, like templates,
but also provide other advantages which can only be ac-
complished if a mechanism for TE is available:

e STRUCTURING KNOWLEDGE
Hierarchically ordered types allow for a modular
way of representing linguistic knowledge. Gener-
alizations can be put at the appropriate levels of
representation. Type erpansion, then, is responsi-
ble for gathering the distributed information that is
attached to the type symbols.

® SAVING MEMORY
In practice, it is not possible to hold huge lexica in
full detail in memory. However, only the idiosyn-
cratic information of a lexicon entry needs to be
represented. Type expansion is employed in making
the constraints imposed by lexical types explicit.

e EFFICIENT PROCESSING
Working with type names only or with partially ex-
panded types minimizes the costs of copying struc-
tures during processing and speeds up unification.
This can only be accomplished if the system makes
a mechanism for type expansion available.

e TYPE CHECKING

Type definitions allow a grammarian to declare
which attributes are appropriate for a given type
and which types are appropriate for a given at-
tribute, therefore disallowing one from writing in-
consistent feature structures. Again, type expansion
is necessary to determine the global consistency of
a given description.

e RECURSIVE TYPES

Recursive types give a grammar writer the oppor-
tunity to formulate certain functions or relations as
recursive type specifications. Working in the type
deduction paradigm forces a grammar writer to re-
place the context-free backbone through recursive
types. Here, parameterized delayed type expansion
is the key to controlled linguistic deduction [Uszko-
reit, 1991].

e ANYTIME BEHAVIOUR

Complex architectures for NL processing require
modules that can be interrupted at any time, re-
turning an incomplete, nevertheless useful result
[Wahlster, 1993]. Such modules are able to continue
processing with only a negligible overhead, instead
of having been restarted from scratch. Type expan-
ston can serve as an anytime module for linguistic
processing.

in tne next section, we imtroduce tne bdasiC 1mvenitory
to describe our own novel approach to TE. We then de-
scribe the basic structure of the algorithm, present sev-
eral improvements, and show how it can be parameter-
ized w.r.t. different dimension. Finally, we have a few
words on theoretical results and compare our treatment
with others.

2 Preliminaries

In order to describe our algorithm, we need only a small
inventory to abstract from the concrete implementation
in TDL [Krieger and Schifer, 1994] and to make the ap-
proach comparable to others. First of all, we assume
pairwise disjoint sets of features (attributes) F, atoms
(constants) A, logical variables V, and types T.

In the following, we refer to a type hierarchy T by a
pair (T, <), such that < C 7 x T is a decidable partial
order, i.e., < is reflexive, antisymmetric, and transitive.

A typed feature structure (TFS) 6 is essentially either
a 1-term or an e-term [Ait-Kaci, 1986], i.e.,

0 := (a,7,9) | (z,7,0)

such that z € V, 7 € T, ® = {f1 = 61,...,fn = On},
and © = {61,...,0,}, where each f; € F and 6; is again
a TFS.

We will call the equation f = 6 a feature constraint (or
an attribute-value pair).®> @ is interpreted conjunctively,
whereas O represents a disjunction. Variables are used
to indicate structure sharing.

Let us give a small example to see the correspondences.
The typed feature structure

(z, cyc-list, {FIRST = 1, REST = z})

should denote the same set of objects as the following
two-dimensional attribute-value matrix (AVM) notation:

cyc-list
FIRST 1
REST

It is worth noting that for the purpose of simplicity
and clarity, we restrict TFS to the above two cases. Ac-
tually, our algorithm is more powerful in that it handles
other cases, for instance conjunction, disjunction, and
negation of types and feature constraints.

A type system Q is a pair (0,7), where © is a finite
set of typed feature structures and 7 an inheritance hi-
erarchy. Given 2, we call 8 € O a type definition.

3Tt should be noted that we define TFS to have a nested
structure and not to be flat (in contrast to feature clauses in
a more logic-oriented approach, e.g., [Ait-Kaci et al., 1993])
in order to make the connection to the implementation clear
and to come close to the structured attribute-value matrix
notation.



vur algorithm 15 1ndepenaent or tne undaerlying de-
duction system—we are not interested in the normaliza-
tion of feature constraints (i.e., how unification of feature
structures is actually done) nor are we interested in the
logic of types, e.g., whether the existence of a greatest
lower bound is obligatory (TFS [Zajac, 1992]; ALE [Car-
penter and Penn, 1994]) or optional as in 7DL [Krieger
and Schifer, 1994]. We assume here that typed unifica-
tion is simply a black box and can be accessed through
an interface function (say unify—tfs). From this perspec-
tive, our expansion mechanism can be either used as a
stand-alone system or as an integrated part of the typed
unification machinery.

We only have to say a few words on the semantic foun-
dations of our approach at the end of this paper. This
is because we could either choose extensions of feature
logic [Smolka, 1989] or directly interpret our structures
within the paradigm of (constraint) logic programming
[Lloyd, 1987; Jaffar and Lassez, 1987].

3 Algorithm

The overall design of our TE algorithm was inspired by
the following requirements:

e support a complete expansion strategy
e allow lazy expansion of recursive types
e minimize the number of unifications

e make expansion parameterizable for delay and pref-
erence information

Before we describe the algorithm, we modify the syn-
tax of TFS to get rid of unimportant details. First, we
simplify TF'S in that we omit variables. This can be done
without loss of generality if variables are directly im-
plemented through structure-sharing (which is the case
for our system). Hence conjunctive TFS have the form
(r,{f1 = 01,..., fn = 6,}), whereas disjunctive are of
the form (7, {601,...,6,}).

Given a TFS 6, type-of () returns the type of 6,
whereas typedef () obtains the type definition with-
out inherited constraints as given by the type system
Q= (0,Z). We call this TFS a skeleton. It is either
(0,{01,...,0,}) or {(o,{f1 =61,..., fn =06r}), where o
are the direct supertype(s) of 7.

Because the algorithm should support partially ex-
panded (delayed) types, we enrich each TFS 6 by two
flags:

1. A-expanded(0)=true, iff typedef (type—of (6)) and
the definitions of all its supertypes have been unified
with 6, and false otherwise.

2. expanded(f)=true, iff A-expanded(f)=true and ez-
panded(0;)=true for all elements 6; of TFS 6.

nence a-erpanaea 1S a 10Cal property or a 1ros that
tells whether the definition of its type is already present,
while ezpanded is a global property which indicates that
all substructures of a TFS are A-expanded. Clearly,
atoms and types that possess no features are always ex-
panded. The exploitation of these flags leads to a drastic
reduction of the search space in the expansion algorithm.

3.1 Basic Structure

The following functions briefly sketch the basic algo-
rithm. Tt is a destructive depth-first algorithm with
a special treatment of recursive types that will be ex-
plained in Section 3.3.

erpand—tfs is the main function that initializes TE.
The while loop is executed until the TFS 8 is expanded
or so-called “resolved” (see keyword :resolved-predicate
in Section 3.5). Several passes may be necessary for re-
cursive TFS.

expand-tfs(0) :=
while not (ezpanded—p(0) or resolved-p(6) or
no unification occurred in last pass)
depth—first-ezpand(9).
/* or types—first—ezpand(0), resp. */

depth—first—expand and types—first—expand recursively
traverse a TFS. Which of both functions is employed,
can be specified by the user. The visited check is done
by comparing variables (actually, structure-sharing in
the implementation makes variables obsolete). types—
first—expand is defined analogously by first expanding
the root type of a TFS, and then processing the feature
constraints.

depth—first-ezpand(0) :=
if 6 has been already visited in this pass
then return
else
if 0= (1, {61,...,6.)})
then
for every 6 € {01,...,0,}:
depth—first—ezpand (6)
else do /* 0 = (1, {fr = 04,...
for every 6 € {61,...,0,}:
depth—first—expand (6);
if not A-ezpanded(0)
then unify—type—and-node(t, 6)
od.

unify—type—and—node destructively unifies § with the ex-
panded TFS of 7. The index ¢ specifies which “proto-
type” of 7 is chosen (see Section 3.2).

unify—type—and-node(t, 6) :=
ifr=-o
then unify—tfs (negate—fs (expand—type(o,1)),0)
else unify—tfs (expand—type(r,t),0);
A-ezpanded(6) + true.

We adapt Smolka’s treatment of negation for our TFS
[Smolka, 1989]. Note that we only depict the conjunctive
case here.



negate—js\t = (7,J1 = U1,..., Jn = 0Ung}) =
return
<T7 {<_'T7 {}):

(T7 {fl T})’ (T: {fl i_ ne.gateffs(el)}% R}
(T, {fn 11, (T, {fn = negate-fs(6,)})}).

3.2 Indexed Prototype Memoization

The basic idea of memoization [Michie, 1968] is to tab-
ulate results of function applications in order to prevent
wasted calculations. We adapt this technique to the type
expansion function. The argument of our memoized ex-
pansion function is a pair consisting of a type name (or
a name of a lexicon entry or a rule) and an arbitrary in-
dex that allows access to different TFS of the same type
which may be expanded in different ways (e.g., partially
or fully). Such feature structures are called prototypes.
Once a prototype has been expanded according to
the attached control information, its expanded version
is recorded and all future calls return a copy of it, in-
stead of repeating the same unifications once again:

ezpand-type(T, index) :=
if protomemo(t, indez) undefined
then 6 < ezpand—tfs(typedef (7));
protomemo(T, indez) < 6;
return copy—tfs(6)
else return copy—tfs(protomemo(r, indez)).

Most of these computations can be done at compile
time (partial evaluation), and hence speed up unification
at run time. The prototypes can serve as basic blocks for
building a partially expanded grammar.

Some empirical results indicate the usefulness of in-
dexed prototype memoization. Figure 1 contains sta-
tistical information about the expansion of an HPSG
grammar with approx. 900 type definitions. About 250
additional lexicon entries and rules have been expanded
from scratch, i.e., all types are unexpanded (are skele-
tons) at the beginning. The type and instance skeletons
together consist of about 9000 nodes, whereas the result-
ing structures have a total size of approx. 50000 nodes.

The measurements show that memoization speeds up
expansion by a factor of 5 here (or 10 if all types ex-
cept the lexicon entries are pre-expanded). These fac-
tors are directly proportional to the number of unifica-
tions. The time difference between the memoized and
non-memoized algorithm may be even bigger if disjunc-
tions are involved. The sample grammar contains only
a few disjunctions.

3.3 Detecting Recursion

The memoization technique is also employed in detect-
ing recursive types. This is important in order to pre-
vent infinite computations. We use the so-called “ex-
pand stack” of expand—type to check whether a type is
recursive or not (see Section 3.4). Each call of ezpand—
type (T, index) will push 7 onto the expand stack. This
stack then is passed to erpand-tfs.

11 a typ€ 7 O1n top O1 the €xXpand stacCk also OCCurs below
in the stack (7,0n,---,01,7, Ppm,---,p1), we immediate
know that the types 7,04, .. .,01 are recursive. Further-
more,these types form a strongly connected component
(scc) of the type dependency (or occurrence) graph, i.e.,
each type in the scc is reachable from every other type
in the scc. Examples for such sccs are (cons list) and
(statel) in the trace of the example below (Section 3.4).

Testing whether a type is recursive or not thus reduces
to a simple find operation in a global list that contains
all sccs. The expansion algorithm uses this information
in expand-tfs to delay recursive types if the expand stack
contains more than one element. Otherwise, prototype
memoization would loop.

If a recursive type occurs in a TFS and this type has
already been expanded under a subpath, and no features
or other types are specified at this node, then this type
will be delayed, since it would expand forever (we call
this lazy expansion). An instance of such a recursive
type that stops is the recursive version of list, as defined
below.

3.4 Example

In the following, we define a finite automaton with two
states that accepts the language a*(a + b). The input
is specified through a list under path INPUT ; cf. the
definition of type ab below. The distributed (or named)
disjunction [Eisele and Dérre, 1990] headed by $1 in type
statel is used to map input symbols to state types (and
vice versa). Defining FA this way provides a solid basis
for the integration of automata-based allomorphy (e.g.,
2-level morphology) and morphotactics within the same
constraint-based formalism (cf. [Krieger et al., 1993)).

list = {cons, ()}

[FiRST T

cons = | st list

] we abbr. cons via (...)

FineuT ([1.[2])
EDGE

| NExT  [mvPUT 2]

[ INPUT () ]

non-final =

final = | EDGE undef

| NEXT  undef

statel = | EDGE $1{a,{a,b}}

[ non-final
| NEXT $1 {statel, final}

ab =

[ state1
INPUT (a,b)

Fig. 2 shows a trace of the expansion of type ab. The
algorithm is depth—first-expand without any delay or
preference information. In this trace, we assume that



algorithm depth—1st—ezpand | types—1st—ezpand | depth—1st—ezpand | types—1st—expand

memoization yes yes no no

time (secs) 45| 237 46 | 237 216 218

unifications 27221 | 144957 27207 | 14481~ 155888 155876

number of 853 | *cons* 260 | *cons* 8330 [ *avm* 8454 | *avm*

calls to 316 | cat-type 147 | *diff-list* 2392 | sem-expr 2503 | sem-expr

ezpand-type || 269 | *diff-list* 143 | morph-type |1379 [term-type |1420 |term-type
243 | morph-type 94 | nmorph-head | 1161 | *cons* 1196 | *cons*

*: with types || 208 | atomic-wff 83 | sort-expr 1003 | wff-type 1073 | wff-type

pre-expanded || 202 | rp-type 71| atomic-wff 933 | agr-feat 951 | agr-feat
146 | conj-wff-type | 62 | rp-type 880 | semantics 747 | semantics
120 | var-type 53 | subwff-inst 823 | indexed-wff | 730 |indexed-wff

Figure 1: Efficiency of depth-first vs. types-first expansion with/without indexed prototype memoization.

it was not known before that the types cons (abbrevi-

ated as (..

sccs will be computed on the fly.

.)), list, and statel are recursive, hence the

The result of expand-type(ab) is the following feature

structure:
[ab ]
inpUT (@a.R2KBIb.[E()))
EDGE
statel
INPUT
expand—type(ab) = EDGE
NEXT final
INPUT
NEXT EDGE undef
i NEXT wundef

If we ran our automaton on the input abb,

abb = [statel ]

INPUT (a, b, b)

it would be rejected: ezpand-type(abb) = fail.

3.5 Declarative Specification of Control
Information

Control information for the expansion algorithm can be
specified globally, locally for each prototype, as well as
for a specific expand-tfs call. The following control key-
words have been implemented so far.

o :expand-function {depth|types}-first-expand specifies

the basic expansion algorithm.

e :delay { ( {type | (type [pred])} {path}* ) }* specifies
types at path to be delayed. path may be a feature
path or a complex path pattern with wildcard sym-
bols *, +, ?, feature and segment variables. pred
is a test predicate to compare types, e.g., = or <
(checked in wunify—type—and-node).

o {:expand|:expand-only} { ( {type | (type [index
[pred]]))} {path}* ) }* There are two mutually ex-
clusive modes concerning expansion of types. If the
:expand-only list is specified, only types in this list

will be expanded with the specified prototype in-
dex, all others will be delayed. If the :expand list
is specified, all types will be expanded (checked in
unify-type—and-node).

:maxdepth integer specifies that all types at paths
longer than integer will be delayed anyway (checked
in unify—type—and-node).

:attribute-preference {attribute}* defines a partial
order on attributes that will be considered in
the functions depth—first—expand and types—first—
erxpand. The substructures at the attributes left-
most in the list will be expanded first. This non-
numerical preference may speed up expansion if no
numerical heuristics are known.

:use-{conj|disj}-heuristics {t|nil} [Uszkoreit, 1991]
suggested exploiting numerical preferences to speed
up unification. Both keywords control the use of
this information in functions depth—first—expand and
types—first—expand.

:resolved-predicate {resolved-p|always-false|...} This
slot specifies a user definable predicate that may
be used to stop recursion (see function ezxpand—tfs).
The default predicate is always-false which leads to
a complete expansion algorithm if no other delay
information is specified.

:ask-disj-preference {t|nil} If this flag is set to t, the
expansion algorithm interactively asks for the or-
der in which disjunction alternatives should be ex-
panded (checked in depth—first-ezpand and types—
first-ezpand)

signore-global-control {t|nil} Specifies whether glob-
ally specified :expand-only, :expand, and :delay infor-
mation should be ignored or not.

Let us give an example to show how control infor-
mation can be employed. Note that we formulate this
example in the concrete syntax of TDL.



step ezpand-type in type under path expand stack

1 cons ab INPUT.REST (ab)

2 list cons REST (cons ab)

3 cons list € (list cons ab) — (cons list) is new scc, delay cons here
4 cons ab INPUT (abd)

5 statel ab € (abd)

6 statel statel NEXT (statel ab) — (statel) is new scc, delay statel here
7  final statel NEXT (statel ab)

8 non-final statel € (statel ab)

9 cons non-final INPUT (non-final statel ab)

10 statel ab NEXT (abd)

Figure 2: Tracing the expansion of type ab. ab is consistent, hence the finite automata accepts input (a,b).

defcontrol verb
((:delay ((sign Subsumes)
SYNSEM.NONLOCAL.?7.SLASH))

;3 7 matches INHERITED and TO-BIND
(:attribute-preference

SYNSEM DTRS SUBCAT HEAD)
(:use-disj-heuristics T)
(:ignore-global-control T)
(:expand ((local initial) *)))
;3 * matches all paths in type local
:index 1.

3.6 How to Stop Recursion

Type expansion with recursive type definitions is unde-
cidable in general, i.e., there is no complete algorithm
that halts on arbitrary input (TFS) and decides whether
a description is satisfiable or not (see Section 5). How-
ever, there are several ways to prevent infinite expansion
in our framework:

e The first method is part of the expansion algorithm
(lazy expansion) as described before.

e The second way is brute force: use the :maxdepth
slot to cut expansion at a suitable path depth.

e The third method is to define :delay patterns or to
select the :expand-only mode with appropriate type
and path patterns.

e The fourth method is to use the :attribute-preference
list to define the “right” order for expansion.

e Finally, one can define an appropriate :resolved-
predicate that is suitable for a class of recursive

types.

4 Applications

In Section 3.4, we have already mentioned an NL ap-
plication in which type expansion was employed, viz.,
in the formulation of the interface between allomorphy
and morphotactics [Krieger et al., 1993]. Let us quickly
present two other areas that profit from type expansion:
parsing/generation as type expansion and distributed
parsing with partially expanded information.

Parsing and generation can be seen in the light of type
expansion as a uniform process, where only the phonol-
ogy (for parsing) or the semantics (for generation) must
be given, for instance:

Parsing: phrase .
PHON ( “John” “likes” “bagels” )

Type expansion together with a sufficiently specified
grammar then is responsible in both cases for construct-
ing a fully specified feature structure which is maximal
informative and compatible with the input structure.

Distributed parsing is a strategy which reduces the
representational overhead: given one grammar which co-
specifies syntax and semantics, proper constraints (i.e.,
filters) are separated from purely representational con-
straints. The resulting subgrammars are then processed
by two parsers in parallel. This presupposes that we can
properly handle partially expanded typed feature struc-
tures.

5 Theoretical Results

It is worth noting that testing for the satisfiability
of feature descriptions admitting recursive type equa-
tions/definitions is in general undecidable. [Rounds and
Manaster-Ramer, 1987] were the first to have shown that
a Kasper-Rounds logic enriched with recursive types al-
lows one to encode a Turing machine. Later, [Smolka,
1989] argued that the undecidability result is due to
the use of coreference constraints. He demonstrated his
claim by encoding the word problem of Thue systems.
Hence, our expansion mechanism is faced with the same
result in that expansion might not terminate.

However, we conjecture that non-satisfiability and
thus failure of type expansion is, in general, semi-
decidable. The intuitive argument is as follows: given
an arbitrary recursive TFS and assuming a fair type un-
folding strategy, the only event under which TE termi-
nates in finite time follows from a local unification failure
which then leads to a global one. In every other case, the
unfolding process goes on by substituting types through
their definitions. Recently, [Ait-Kaci et al., 1993] have



ormally snowin a similar resuit by using the compact-
ness theorem of first-order logic. However, their proof
assumes the existence of an infinite OSF clause (gener-
ated by unfolding a -term).

Thus, our algorithm might not terminate if we choose
the complete expansion strategy. However, we noted
above that we can even parameterize the complete ver-
sion of our algorithm to ensure termination, for instance
to restrict the depth of expansion (analogous to the off-
line parsability constraint). The non-complete version
always guarantees termination and might suffice in prac-
tice.

Semantically, we can formally account for such recur-
sive feature descriptions (with respect to a type system)
in different ways: either directly on the descriptions,
or indirectly through a transformational approach into
(first-order) logic. Both approaches rely on the construc-
tion of a fixpoint over a certain continuous function.*
The first approach is in general closer to an implemen-
tation (and thus to our algorithm) in that the func-
tion which is involved in the fixpoint construction cor-
responds more or less to the unification/substitution of
TFS (see for instance [Ait-Kaci, 1986] or [Pollard and
Moshier, 1990]). The latter approach is based on the
assumption that TFS are only syntactic sugar for first-
order formulae. If we transform these descriptions into
an equivalent set of definite clauses, we can employ tech-
niques that are fairly common in logic programming, viz.
characterizing the models of a definite program through
a fixpoint. Take, for instance, our cyc-list example from
the beginning to see the outcome of such a transforma-
tion (assume that cyc—list is a subtype of list):

V. cyc-list(z) < Ty, z . list(x) A
FIRST(z,y) A REST(z, 2) A
y=1lAz==x

6 Comparison to other Approaches

To our knowledge, the problem of type expansion within
a typed feature-based environment was first addressed
by Hassan Ait-Kaci [Ait-Kaci, 1986]). The language he
described was called KBL and shared great similarities
with LOGIN; see [Ait-Kaci and Nasr, 1986]. However, the
expansion mechanism he outlined was order dependent
in that it substituted types by their definition instead
of unifying the information. Moreover, it was non-lazy,
thus it will fail to terminate for recursive types and per-
forms TE only at definition time as is the case for ALE
[Carpenter and Penn, 1994]. However, ALE provides re-
cursion through a built-in bottom-up chart parser and
through definite clauses. Allowing TE only at definition
time is in general space consuming, thus unification and
copying is expensive at run time.

“In both cases, there is, in general, more than one fixpoint,
but it seems desirable to choose the greatest one, as it would
not rule out, for instance, cyclic structures.

ANother possibdiiity one mignt 10liow 1S 1O Integrate 1o
into the typed unification process so that TE can take
place at run time. Systems that explore this strategy
are TFS [Zajac, 1992] and LIFE [Ait-Kaci, 1993]. How-
ever, both implementations are not lazy, thus hard to
control and moreover, might not terminate. In addi-
tion, if prototype memoization is not available, TE at
run time is inefficient; cf. Fig. 1). A system that em-
ploys a lazy strategy on demand at run time is CUF
[Dérre and Dorna, 1993). Laziness can be achieved here
by specifying delay patterns as is familiar from PROLOG.
This means delaying the evaluation of a relation until the
specified parameters are instantiated.

7 Summary

Type expansion is an operation that makes constraints
of a typed feature structure explicit and determines its
satisfiability. We have described an expansion algorithm
that takes care of recursive types and allows us to ex-
plore different expansion strategies through the use of
control knowledge. Efficiency is addressed through spe-
cialized techniques: (i) prototype memoization reduces
the number of unifications, and (ii) preference informa-
tion directs the search space. Because our notion of type
expansion is conceived as a stand-alone module here, one
can freely choose the time of its invocation, e.g., during
typed unification, parsing, etc.

The algorithm, as presented in the paper, has
been fully implemented within the 7DL/UDiNe system
[Krieger and Schéfer, 1994; Backofen and Weyers, 1994]
and is an integrated part of Disco [Uszkoreit et al.,
1994].

We are convinced that our approach is also of interest
to those who are working with (possibly recursive and hi-
erarchically ordered) record-like data structures in other
areas of computer science.

References

[Ait-Kaci and Nasr, 1986] Hassan Ait-Kaci and Roger Nasr.
LOGIN: A logic programming language with built-in in-
heritance. Journal of Logic Programming, 3:185-215, 1986.

[Ait-Kaci et al., 1993] Hassan Ait-Kaci, Andreas Podelski,
and Seth Copen Goldstein. Order-sorted feature theory
unification. Technical Report 32, Digital Equipment Cor-
poration, DEC Paris Research Laboratory, France, May
1993. Also in Proceedings of the International Symposium
on Logic Programming, Oct. 1993, MIT Press.

[Ait-Kaci, 1986] Hassan Ait-Kaci. An algebraic semantics
approach to the effective resolution of type equations. The-
oretical Computer Science, 45:293-351, 1986.

[Ait-Kaci, 1993] Hassan Ait-Kaci. An introduction to
LIFE—programming with logic, inheritance, functions,
and equations. In Proceedings of the International Sym-
posium on Logic Programming, pages 52-68, 1993.



|backoren anda vveyers, 19J94] Lol Backolen anda C©NOristoph
Weyers. UDiNe—A Feature Constraint Solver with Dis-
tributed Disjunction and Classical Negation. Unpublished
documentation note.

[Carpenter and Penn, 1994] Bob Carpenter and Gerald
Penn. ALE—the attribute logic engine user’s guide. ver-
sion 2.0. Technical report, Laboratory for Computational
Linguistics. Philosophy Department, Carnegie Mellon Uni-
versity, Pittsburgh, PA, August 1994.

[Carpenter, 1992] Bob Carpenter. The Logic of Typed Fea-
ture Structures. Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge, 1992.

[Dérre and Dorna, 1993] Jochen Dérre and Michael Dorna.
CUF—a formalism for linguistic knowledge representa-
tion. In Jochen Dorre, editor, Computational Aspects of
Constraint-Based Linguistic Description I. DYANA, 1993.

[Eisele and Dérre, 1990] Andreas Eisele and Jochen Dérre.
Disjunctive unification. IWBS Report 124, IWBS, IBM
Germany, Stuttgart, 1990.

[Jaffar and Lassez, 1987] Joxan Jaffar and Jean-Louis
Lassez. Constraint logic programming. In Proc. of 14th
POPL, pages 111-119, 1987.

[Krieger and Schifer, 1994] Hans-Ulrich Krieger and Ulrich
Schéfer. TDL—a type description language for constraint-
based grammars. In Proc. of 15th COLING, pages 893—
899, 1994.

[Krieger et al., 1993] Hans-Ulrich Krieger, John Nerbonne,
and Hannes Pirker. Feature-based allomorphy. In Proc.
of 81st ACL, pages 140-147, 1993.

[Lloyd, 1987] J.W. Lloyd. Foundations of Logic Program-
ming. Springer, 2nd edition, 1987.

[Michie, 1968] Donald Michie. “Memo” functions and ma-
chine learning. Nature, 218(1):19-22, 1968.

[Pollard and Moshier, 1990] Carl J. Pollard and M. Drew
Moshier. Unifying partial descriptions of sets. In P. Han-
son, editor, Information, Language, and Cognition. Vol. 1
of Vancouver Studies in Cognitive Science, pages 285-322.
University of British Columbia Press, 1990.

[Pollard and Sag, 1987] Carl Pollard and Ivan A. Sag.
Information-Based Syntaz and Semantics. Vol. I: Funda-
mentals. CSLI Lecture Notes, Number 13. Center for the
Study of Language and Information, Stanford, 1987.

[Rounds and Manaster-Ramer, 1987] William C. Rounds
and Alexis Manaster-Ramer. A logical version of func-
tional grammar. In Proc. of 25th ACL, pages 89-96, 1987.

[Shieber et al., 1983] S. Shieber, H. Uszkoreit, F. Pereira, J.
Robinson, and M. Tyson. The formalism and implemen-
tation of PATR-II. In Barbara J. Grosz and Mark E.
Stickel, editors, Research on Interactive Acquisition and
Use of Knowledge, pages 39-79. AI Center, SRI Interna-
tional, Menlo Park, Cal., 1983.

[Shieber, 1986] Stuart M. Shieber. An Introduction to
Unification-Based Approaches to Grammar. CSLI Lecture
Notes, Number 4. Center for the Study of Language and
Information, Stanford, 1986.

[omolka, 1989 Gert omolka. Feature constraint 10giC 1or uni-
fication grammars. IWBS Report 93, IWBS, IBM Ger-
many, Stuttgart, November 1989. Also in Journal of Logic
Programming, 12:51-87, 1992.

[Uszkoreit et al., 1994] H. Uszkoreit, R. Backofen, S. Buse-
mann, AK. Diagne, E.A. Hinkelman, W. Kasper, B.
Kiefer, H.-U. Krieger, K. Netter, G. Neumann, S. Oepen,
and S.P. Spackman. DISCO—an HPSG-based NLP sys-
tem and its application for appointment scheduling. In
Proc. of 15th COLING, pages 436—440, 1994.

[Uszkoreit, 1991] Hans Uszkoreit. Strategies for adding con-
trol information to declarative grammars. In Proc. of 29th
ACL, pages 237-245, 1991.

[Wahlster, 1993] Wolfgang Wahlster. VERBMOBIL—
translation of face-to-face dialogs. Proc. of MT Summit
1V, 127-135, Kobe, Japan, July 1993.

[Zajac, 1992] Rémi Zajac.
based grammar formalisms.
18(2):159-182, 1992.

Inheritance and constraint-
Computational Linguistics,



