
17

KI Fa c h b e i t r ä g e 1/04

1 Introduction
Nowadays, we are witnessing an ever-growing trend of de-

ploying lightweight linguistic analysis for solving problems that
deal with the conversion of the vast bulk of raw textual infor-
mation from myriads of digital data repositories into structured
and valuable knowledge. Recent advances in the areas of infor-
mation extraction, text mining, and textual question answering
demonstrate the benefit of applying shallow text processing
(STP) techniques, which are assumed to be considerably less
time-consuming and more robust than deep processing sys-
tems, but are still sufficient to cover a broad range of linguistic
phenomena.

This article also gives a walkthrough on the foundations
and applications of SProUT (Shallow Processing with Unification
and Typed feature structures), a novel platform for the develop-
ment of multilingual STP systems. It consists of several linguistic
processing resources which can be coupled in a flexible way for
building higher-level linguistic engines, and provides an inte-
grated grammar development and testing environment.

The motivation for developing SProUT comes from the
need to have a system that (i) allows a flexible integration of dif-
ferent processing modules and (ii) to find a good trade-off be-
tween processing efficiency and expressiveness of the formal-
ism. On the one hand, very efficient finite-state (FS) devices have
been successfully applied to real-world applications. On the
other hand, unification-based grammars (UBGs) are designed to
capture fine-grained syntactic and semantic constraints, result-
ing in better descriptions of natural language phenomena. In
contrast to FS devices, unification-based grammars are also as-
sumed to be more transparent and more easily modifiable. The
idea of SProUT is to take the best of these two worlds, having a
FS machine that operates on typed feature structures (TFSs). I.e.,
transduction rules in SProUT do not rely on simple atomic sym-
bols, but instead on TFSs, where the left-hand side (LHS) of a
rule is a regular expression over TFSs, representing the recogni-
tion pattern, and the right-hand side (RHS) is a TFS, specifying
the output structure. Consequently, equality of atomic symbols
is replaced by unifiability of TFSs and the output is constructed
using TFS unification w.r.t. a type hierarchy.
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The article is structured as follows. Section 2 presents relat-
ed work, viz., extended FS devices and unification-based gram-
mars. After that, section 3 describes the formalism, starting with
the building blocks (TFS, type definition, type hierarchy) and
ending in regular expressions over TFSs. The architectural
framework and the core components are discussed in section 4.
Finally, section 5 focuses on various applications of SProUT in
both research and industrial context.

2 Related Work
Both finite-state devices and unification-based grammars

have influenced the shallow TFS formalism which will be pre-
sented in section 3.

2.1 Finite-State Devices
The pure finite-state-based STP approaches have proved to

be very efficient in terms of processing speed. [23] present
SPPC, a highly efficient system, which uses cascades of simple
finite-state grammars, based on a small number of basic predi-
cates. Complex constraints can not be encoded in the FS device.
The idea of using more complex annotations on the transitions
of FS automata has been considered in SMES [18] which uses
regular grammars with predicates over morphologically ana-
lyzed tokens. These predicates inspect arbitrary properties of
the input tokens, like part of speech or inflectional information.
[30] introduce arbitrary predicates over symbols and discuss
various operations on finite-state acceptors and transducers.
They observe that automata with predicates generally have
fewer states and transitions. However, the discussed automata
only operate on symbols of a finite input alphabet. As a draw-
back of using too many or too complex predicates, standard
optimization techniques are hardly applicable.

In the last few years, several cascaded FS-based systems
have been developed for information extraction tasks. The
most successful systems provide high-level specification lan-
guages for grammar writing. The pioneering FASTUS system [10]
uses CPSL (Common Pattern Specification Language). The more
recent GATE system [6] provides JAPE (Java Annotation Pat-
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terns Engine), which is similar in spirit to CPSL and admittedly
borrows its main features from CPSL. A CPSL/JAPE grammar
contains pattern-action rules. The LHS of a rule is a regular ex-
pression over atomic feature-value constraints (the recognition
part), while the RHS is a so-called annotation manipulation state-
ment for output production, which calls native code (e.g., C or
Java), making rule writing difficult for non-programmers. Fur-
thermore, even though there is a mechanism for variable bind-
ing which is responsible for copying values into the RHS, this
mechanism is not capable of declaratively describing corefer-
ences among the rule elements.

2.2 Unification-Based Grammars
Since the late seventies, UBG formalisms have become an

important paradigm in natural language processing and com-
putational linguistics. In the beginning, unification was em-
ployed as the primary constraint solving mechanism, hence the
term unification-based grammars. Nowadays, this family of for-
malisms is often characterized through the more general no-
tion constraint-based.

Their success stems from the fact that they can be seen as a
monotonic, high-level representation language on which a
parser/generator or a uniform type deduction mechanism acts
as the inference engine. One of the main advantages of such
formalisms is that they provide a declarative (as opposed to pro-
cedural) representation of linguistic knowledge, i.e., one must
only specify the knowledge which participates in the constraint
solving process, instead of anticipating the order in which the
constraints are applied.

The representation of as much linguistic knowledge as pos-
sible through a unique data type called feature structure allows
the integration of different description levels, spanning phonol-
ogy, syntax, and semantics. Here, the feature structure itself
serves as the abstract interface between the different strata
which can thus be accessed and constrained at the same time.
Central to feature structures is an operation which combines the
information from two feature structures into a single structure,
but also determines the satisfiability of the resulting descrip-
tion: unification.

Informally, a feature structure can be seen as a collection of
feature-value pairs, where a feature expresses a functional prop-
erty and the value of a feature might again be a feature structure
(or an atom), thus allowing for recursive embeddings. An impor-
tant characteristic of feature structures is that they allow for coref-
erence constraints, meaning that two features share exactly one
common value. This concept allows for the transport of informa-
tion and is exhaustively used in SProUT grammar rules, where fea-
tures on the LHS share values with other features on the RHS.

Feature structures can also be given a type which ultimately
leads to a typed feature structure. First of all, a type can be seen as
a compact abbreviation for a TFS, supporting clarity and easy
modifiability of descriptions (a.k.a. a type definition). Further-
more, types can be arranged in a type hierarchy, allowing multi-
ple inheritance of information from all supertypes. The next sec-
tion will give examples.

3 XTDL–The Formalism in SProUT
XTDL combines two well-known frameworks: typed feature

structures and regular expressions.

3.1 The Basis: TDL
XTDL is defined on top of TDL, a definition language for TFSs

[13] that is used as a descriptive device in several grammar sys-
tems (LKB [4], PAGE [29], PET [3]). We use the following fragment of
TDL, including coreferences.

type-def → type ":=" avm "." |
type ":<" type "." |
string ":<" type "."

type → identifier
avm → term { "&" term} ∗

term → type | fterm | string | coref
fterm → "[" [attr-val {"," attr-val} ∗] "]"
attr-val → identifier avm
coref → "#"identifier

Apart from the integration into the rule definitions, we also
employ this fragment in SProUT for the establishment of a type
hierarchy of linguistic entities. In the example definition below,
the morph type inherits from sign and introduces four morpho-
syntactically motivated attributes, together with their corre-
sponding values.

morph := sign & [POS atom,

STEM atom,

INFL infl,

SEGMENTATION list].

POS encodes part-of-speech information, e.g., whether a
morph sign is a noun, a verb, etc. The STEM feature refers to the
main form of a word, e.g., gut is the stem of besser. The value of
INFL is again a feature structure, representing inflectional infor-
mation. The SEGMENTATION feature is a list-valued feature, en-
coding a sequence of segments for the compound word.

The next figure depicts a fragment of the type hierarchy
used in the example.

3.2 The Regular Extension: XTDL
A rule in XTDL is straightforwardly defined as a recognition

pattern on the LHS, written as a regular expression, and an out-
put description on the RHS.1 A named label serves as a handle
to the rule. Regular expressions over feature structures describe
sequential successions of linguistic signs. We provide a couple
of standard operators; see the EBNF below. Concatenation is ex-
pressed by consecutive items. Disjunction, Kleene star, Kleene
plus, and optionality are represented by the operators |, *, +, and

1 XTDL rules are related to lexical rules in UBGs, devices developed for
expressing lexical generalizations; see section 3.
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?, resp. {n} following an expression denotes an n-fold repetition,
whereas {m,n} repeats at least m times and at most n times.

rule → rulename {":>" |  ":/"} regexp "->" [avm] [fun-op] "."
rulename → identifier
regexp → avm | "@seek(" rulename ")" | "(" regexp ")" |

regexp {regexp} + | regexp {"|" regexp} + |
regexp {"*" | "+" | "?"} | regexp "{" int [ "," int ] "}"

fun-op → ", where" coref "=" fun-app {"," coref "=" fun-app} ∗

fun-app → identifier "(" term {"," term} ∗  ")"

The choice of TDL as a basis for XTDL has a couple of advan-
tages. TFSs as such provide a rich descriptive language over lin-
guistic structures (as opposed to atomic symbols) and allow for
a fine-grained inspection of input items. They represent a gen-
eralization over pure atomic symbols. Unifiability as a test crite-
rion (viz., whether a transition is viable) can be seen as a gener-
alization over symbol equality. Coreferences in feature struc-
tures express structural identity. Their properties are exploited
in two ways. They provide a stronger expressiveness since they
create dynamic value assignments while following the transi-
tions in the finite-state automaton, thus exceeding the strict lo-
cality of constraints in an atomic symbol approach. Further-
more, coreferences serve as a means of information transport
into the output description on the RHS of the rule. Finally, the
choice of feature structures as primary citizens of the informa-
tion domain makes composition of modules simple, since input
and output are all of the same abstract data type.2

3.3 Two Examples
The XTDL grammar rule (1) below may illustrate the the

concrete syntax of the formalism. It describes a sequence of
morphologically analyzed tokens (of type morph). The first TFS
matches one or zero items (?) with part-of-speech Determiner.
Then, zero or more Adjective items are matched (*). Finally, one
or two Noun items ({1,2}) are consumed. The use of a variable
(e.g., #c) in different places establishes a coreference (i.e., a
pointer) between features. This example enforces, e.g., agree-
ment in case, number, and gender for the matched items. I.e., all
adjectives must have compatible values for these features. If
the recognition pattern on the LHS successfully matches the in-
put, the description on the RHS creates a feature structure of
type phrase. The category is coreferent with the category Noun
of the right-most token(s) and the agreement features result
from the unification of the agreement features of the morph to-
kens.

np :> morph & [POS Determiner,

INFL [CASE #c, NUMBER #n, GENDER #g ]] ?

(morph & [POS Adjective,

INFL [CASE #c, NUMBER #n, GENDER #g ]] ) *

morph & [POS Noun & #cat,

INFL [CASE #c, NUMBER #n, GENDER #g ]] {1,2}

–> phrase & [CAT #cat,

AGR agr & [CASE #c, NUMBER #n, GENDER #g ]].

Figure 1 illustrates the conciseness of the formalism (taken
from the English named-entity grammar developed by Atsuko
Shimada) and addresses the recognition of river names. The

first rule matches expressions consisting of an (unknown) capi-
talized word, followed by a word with stem ‘river’. If the LHS ap-
plies, the string concatenated by the functional operator Conc-
WithBlanks then forms the output of the rule. The second rule
matches one or more prepositions, followed by either a Gazet-
teer match (e.g., containing English river names represented by
the Gazetteer type g_en_river) or the output of the previous
rule (the seek call) bound to the coreference loc_name. The
generated output structure of type ne-location consists of a list
of prepositions, a location type and the (transported) location
name. To sum up, the second rule recognizes both unknown
river names (via the first rule) and known river names (via a gaz-
etteer entry).

Figure 1: A more complex rule combination, involving a functional operator
and a seek call, combining tokenizer input, morphology/lexicon and gazetteer
lookup. We use the graphical visualization tool from the development
environment of SProUT for depicting the two XTDL rules; see also figure 3.

3.4 Functional Operators, SEEK and a Future Extension
As we already said, SProUT differs from other STP systems in

using typed feature structures instead of atomic symbols. The
system further provides two additional extensions: functional
operators and the possibility to call additional rules during the
cause of a single rule interpretation (like a call to a subproce-
dure in a programming language). The latter option even al-
lows a rule to call itself and clearly extends the expressiveness
of the formalism, making it context-free (like the related recur-
sive transition networks are). Using the seek operator slightly
reduces the efficiency of the grammar, forcing the interpreter
to produce new environments for each seek. To improve the ef-
ficiency, we introduced an optimizing mechanism for seek calls.

As opposed to the above regular operators |, *, and +,
SProUT also provides functional operators which are assumed
to be the door to the outside world. Figure 3 has already pre-
sented the usefulness of a functional operator which concate-
nates two strings. SProUT comes along with a set of predefined
functional operators. A new operator must be implemented as
a separate Java class and the execution of a specific operator
call corresponds to the instantiation of the Java class. Since the
SProUT interpreter does not know in advance which functional
operators are employed in a specific grammar, it dynamically
loads a new Java class once at run time during the first call,
thanks to Java’s reflection API. Not only might a functional oper-
ator produce values which are bound and transported via
coreferences to other places in a rule. One can even let such an
operator act as a predicate, producing only Boolean values
which might terminate a rule application, e.g., the production
of output via the RHS of a rule.

We are currently implementing a new concept of weaker,
unidirectional coreference constraints which are extremely
useful under Kleene star (or restricted repetition). The idea here
is that the values under such coreferences are collected in a set
which is given to the RHS of a rule (we indicate this behavior by
using the percent sign in the concrete syntax). Consider, for in-
stance, the np rule (1) above and assume that adjectives also

2 [5] present an integrated architecture for shallow and deep text
processing, which further demonstrates the benefits of using TFSs as a
representation and interchange format.
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have a relation attribute RELN. Our intention is to collect all rela-
tions and to have them grouped in a set on the RHS:

np :> [POS Det, ...] ([POS Adj, ..., RELN %5])*

[POS Noun, ...]

-> [..., RELN %5]

A usual coreference marker, however, would enforce that
the iterated values under RELN attribute are the same.

4 Architecture
The core of the SProUT system consists of four major com-

ponents: a finite-state machine toolkit, a regular compiler, the
XTDL interpreter, and a Java typed feature structure package.
On top of them, reusable online linguistic processing compo-
nents have been developed.

Figure 2: The architecture of SProUT

4.1 Finite-State Machine Toolkit
The FS machine toolkit is a generic toolkit for constructing,

combining, and optimizing FS devices [20]. In order to cover all
relevant types of FS devices and to allow for a parameterizable
weight interpretation, the finite-state machine (FSM) has been
chosen as the underlying model. A FSM is a generalization of
the more familiar finite-state automaton (FSA), finite-state
transducer (FST), and their weighted counterparts [16]. Contra-
ry to weighted FSTs which are tailored to a specific semiring for
weight interpretation, the FSMs are more general in that they
admit the use of arbitrary real-valued semirings (we use, e.g.,
the tropical semiring for regular pattern prioritization). All state-
of-the-art operations on FSMs are provided, whereas the archi-
tecture of the toolkit is mainly based on the tools developed by
AT&T [17]. Furthermore, the toolkit is equipped with some new
crucial operations relevant to STP, including weighted local ex-
tension [26], an efficient algorithm for incremental construction
of minimal, deterministic, and acyclic FSAs from a list of words
[7], plus a general algorithm for removing ε-moves [17] which
has been improved in terms of efficiency.

4.2 Regular Compiler
Since regular expressions are regarded as the adequate lev-

el of abstraction for thinking about finite-state languages, we
developed a flexible XML-based and Unicode-compatible reg-
ular compiler for converting regular patterns into their corre-
sponding compressed finite-state representation [21]. An ex-
tendible set of approx. 20 standard regular operators is provid-

ed. The input data can be interpreted either as a scanner defini-
tion (e.g., token types) or general regular expressions (e.g., regu-
lar expressions over TFSs).

Both the definition and configuration of the transformation
process is done via XML which allows for straightforward exten-
sions. Grammarians may even flexibly bias the process of merg-
ing and optimizing FS devices. For instance, the way in which
ambiguities are handled is triggered by the user via a choice of
two alternative options. In the first one, potential ambiguities
are resolved by assigning weights to the patterns which repre-
sent their priorities, and applying the tropical semiring in the
process of merging them into a single FS device (e.g., in the to-
kenizer of SProUT). The second option is to preserve all ambigu-
ities by introducing appropriate final emissions, representing
pattern identifiers in the corresponding FS devices (e.g., in shal-
low grammars in SProUT). Further subtleties such as the choice
of the minimization algorithm or definition of filters which con-
vert existing resources spread over external databases into FS
representation can be specified by the user.

The compilation of XTDL grammars is straightforward. The
TFSs of the production part in the LHS of each rule are replaced
by symbols representing references to these structures, since
FSM arcs may be only labeled with symbolic values. Subse-
quently, all such modified LHS are transformed into a corre-
sponding FS network. Note that through the use of final emis-
sions mentioned above, an association link between LHSs with
their corresponding RHSs and original rules, is preserved.

Since TFS annotations on arcs of the finite-state networks
usually do not allow for determination and minimization of
such networks under TFS equivalence, a handful of methods
going beyond standard finite-state techniques have been de-
veloped to alleviate this problem [12].

4.3 XTDL Interpreter
The challenge for the SProUT interpreter is to combine reg-

ular expression matching with unification of TFSs. Since the reg-
ular operators such as Kleene star can not be expressed by a
TFS, the interpreter algorithm is faced with the problem of
mapping a regular expression to a corresponding sequence of
TFS, so that the coreference information among the elements
in a rule is preserved. The solution is to separate the matching
of regular patterns using unifiability (LHS of rules) from the con-
struction of the output structure through unification (RHS). The
positive side effect is that the fast matching step filters the po-
tential candidates for the space-consuming unification. After a
compatible pattern is identified, the sequence of input TFSs is
embedded (encoded as a list) into a new TFS.

Subsequently, a rule TFS with an instantiated LHS pattern is
constructed. A TFS representation of a rule contains the two at-
tributes IN and OUT. In contrast to the IN value in the matched in-
put TFS representation, the IN value of the rule contains corefer-
ence information. The value of OUT is the TFS definition of the
RHS of the rule. Given the input TFS and the uninstantiated rule
TFS, the unification of the two structures yields the final output
result.

The use of coreferences between the LHS and the RHS of a
SProUT rule shares great similarities with lexical rules in PATR-II
[28] and HPSG [24]. The technique of embedding an instantiat-
ed LHS pattern and a RHS via the metafeatures IN and OUT also
reminds us of the PATR-II system.

The current implementation employs a longest match strat-
egy. In case of match ambiguities, the result is a disjunction of
RHSs. Since the output of the interpreter are again TFSs, the re-
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sult can be used as input for further (higher-level) linguistic
processing components. In this way, SProUT supports cascaded
architectures straightforwardly (see section 5).

4.4 Typed Feature Structure Package
The JTFS package is a Java implementation of TFSs. JTFS

reads in a binary representation of a typed UBG, including type
hierarchy and lexicon, and builds up the object in main memo-
ry.3 The destructive lazy-copying unifier in JTFS is an optimized
variant of [8], together with an efficient type unification opera-
tion (bit vector bitwise AND plus caching). JTFS supports a dy-
namic extension of the type hierarchy at run time in order to al-
low for the incorporation of unknown words. Other operations,
such as subsumption, unifiability testing, deep copying, path
selection, feature iteration, and different printers are available.

Since the unifiability testing in SProUT is crucial for the effi-
ciency of the whole system, we have developed a further im-
perfect, but extremely fast unifiability test that does not require
the space of the standard test to store the effects of the unifica-
tion. The test is imperfect in that there are very rare combina-
tions of feature structures which are assumed to be unifiable,
but which are not. Such combinations are detected later in the
construction of the RHS of a rule (see interpreter section above)
when performing standard unification. The important part,
however, is that almost all unifiability tests during grammar in-
terpretation fail and for these cases the fast test delivers a cor-
rect answer.

4.5 Processing Components
An application of a compiled grammar to a given text con-

sists of two steps. Firstly, the input text is processed via a stream
of linguistic processing components specified explicitly by the
user. These components produce several streams of so called
text items which constitute the input for the XTDL interpreter
described earlier. Currently the pool of linguistic processing re-
sources contains a tokenizer, a gazetteer, a morphology compo-
nent, and a reference matcher. The tokenizer maps character se-
quences of the input text into word-like units called tokens.
Many IE tasks may be solved almost solely via the application of
a tokenizer. Hence, this component was defined for performing
fine-grained multiple token classification. Each token is firstly
classified according to the main token type and secondly, de-
pending on its main type, it undergoes additional domain and
language specific subclassification.

Since we aim at defining clear-cut components of linguistic
analysis, the context information is disregarded during token
classification. Therefore, sentence boundary detection consti-
tutes a stand-alone module.

The task of the gazetteer is the recognition of full names
(e.g., locations, organizations) and keywords (e.g., company
designators) based on static lexicons. The gazetteer entries may
be associated with a list of arbitrary attribute-value pairs which
strongly supports text normalization.

The morphology unit provides lexical resources for English,
German, Dutch, French, Italian, and Spanish, which were com-

piled from the full form lexicons of MMORPH [19].4 Additionally,
this module is equipped with an online shallow compound rec-
ognition for German and Dutch. Considering Slavic languages,
a component for Czech [9] and Polish [25] has been integrated.
For Asian languages, we use Chasen [1] for Japanese and Shanxi
[15] for Chinese.

Finally, the task of the reference matcher is to find identity
relations between entities previously recognized in the text
(e.g., variants of the same named entity). Note that this compo-
nent runs after grammar interpretation. It takes as input the
output of the XTDL interpreter potentially containing user-de-
fined information on variant construction for certain entity
classes and performs an additional pass through the text for
identification of previously unrecognized entities.

Easy composition of linguistic processing resources is facili-
tated in SProUT, since input and output data are uniformly rep-
resented as TFSs. In the current system, components are ar-
ranged in a strictly sequential fashion. In order to overcome this
inflexible behavior, the system description language SDL has
been developed [11] which allows the construction of a con-
crete system instance by means of a regular expression over
module names. SDL provides operators for expressing concate-
nation, (self-)iteration, and parallel execution of modules. Given
a declarative system specification, SDL finally compiles an exe-
cutable Java program, realizing the intended behavior of the
original system specification.

5 Applications
IE systems are becoming commercially viable in supporting

diverse information discovery and management tasks. The
SProUT platform has been adopted as the core IE component in
several EU-funded and industrial projects, supporting tasks like
content extraction and acquisition for text/data mining, dy-
namic hyperlinking, machine translation, and text summariza-
tion. These applications yield valuable feedback for further im-
provements and extensions of the system.

5.1 Integrating Information Extraction and Automatic
Hyperlinking.
ExtraLink [2] is a novel information system combing IE tech-

nology and automatic hyperlinking. Automatic hyperlinking is a
maturing technology designed to interrelate pieces of informa-
tion, using ontologies to define relationships between con-
cepts. Semantic concepts identified by the SProUT named-enti-
ty recognition component are mapped onto a domain ontolo-
gy that relates concepts to a selection of hyperlinks, which are
directly visualized on demand using a standard web browser.
This way, the user can, while reading a text, immediately link up
textual information to the Internet or to any other document
base without accessing a search engine. ExtraLink showcases
the extraction of relevant concepts from German texts in the
tourism domain, offering the direct connection to associated
web documents on demand.

5.2 Multilingual Information Extraction for AIR FOReCast
in Europe.
The EU-funded AIRFORCE project aims at developing ideas

and components which support building a database of Euro-
pean events and trends, helping to forecast air traffic. AIRFORCE
adopts SProUT for building up domain-specific named entity

3 The binary grammar representation is produced by the flop
preprocessor of the PET system [3].

4 [14] describes an offline compaction method that removes both
redundancies and spurious ambiguities from MMORPH. The described
technique has drastically increased the efficiency of SProUT since it
shrinks the size of the lexicon and comes up with fewer readings for a
morphological form.
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and relation extraction grammars and extracting relations au-
tomatically from official travel warnings, published regularly in
the Internet by the ministries for foreign affairs of France, Ger-
many, and the UK. The results of the extraction process are used
to fill a database. SProUT has been extended to meet the specif-
ic needs of delivering a language-neutral output for English,
French, or German input texts. A shared type hierarchy, a fea-
ture-enhanced gazetteer resource, and generic techniques of
merging chunk analyses into larger results are major reusable
results.

5.3 Multilingual IE for Machine Translation and Text
Summarization.
The EU-funded MEMPHIS project has developed a platform

for cross-lingual premium content services, targeting mainly
portable thin clients, like mobile phones, PDAs, etc. The core of
the system is a cross-lingual transformation layer, integrating
cross-lingual information extraction and summarization of
source documents, translation to the customers’ target lan-
guages, a crosslingual knowledge management for extracted
information based on an application’s domain ontology as well
as multi-lingual generation of documents according to the re-
strictions and requirements of the various target devices for
distribution. SProUT is used on the one hand as a document
processing engine for tokenization, morphological analysis, and
named-entity recognition. On the other hand, the named-enti-
ty recognition has also been integrated into the machine trans-
lation and the text summarization system for boosting their
performance.

5.4 Information Extraction for Polish.
An attempt in applying SProUT in the process of construct-

ing an Information Extraction engine for Polish and adopting it
to the processing of Slavic languages are reported in [22]. The IE
tasks focus on the identification of typical named entities from
financial texts and on extraction of data about pathological
changes from a medical corpus containing descriptions of
mammographical examinations.

5.5 Opinion Mining.
The ARGOSERVER system, developed by the Italian company

Celi, analyzes on a daily basis forums and newsgroups on differ-

ent car manufacturers in order to retrieve interesting messages
and trends. SProUT is applied here to handle the information
extraction task. The extracted opinions are input to statistical
postprocessing, yielding, e.g., the total number of comments (or
attitudes) expressed by the forum/newsgroup users in the
monitored period.

5.6 Hybrid Deep and Shallow Methods for Knowledge-
Intensive Information Extraction
In the DEEPTHOUGHT project, English, German, and Japanese

named entity recognition of SProUT is employed in a hybrid archi-
tecture integrating deep and shallow natural language processing
components (see http://www.project-deepthought.net). Proto-
type application domains are precise information extraction for
business intelligence, e-mail response management for customer
relationship management, and creativity support for document
production and collective brainstorming. Here, the SProUT XML
output is converted to the semantic formalism RMRS (robust mini-
mal recursion semantics) through XSLT stylesheets [27].
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